Амплитудно-частотная характеристика (АЧХ) - зависимость амплитуды колебания на выходе звуковой карты (выход на звуковые колонки) от частоты входного аналогового сигнала при постоянной по амплитуде входного сигнала. Амплитудно-частотная характеристика показывает, как передаются отдельные частотные составляющие аналогового сигнала через звуковую плату, и позволяет оценить искажения его спектра.
Отношение сигнал/шум - представляет собой отношение значений (в децибелах) неискаженного максимального сигнала на выходе звуковой платы к уровню шумов электроники, возникающих в собственных электрических схемах платы. Так как человек воспринимает шум на разных частотах по-разному, был разработан стандарт, который учитывает раздражающий уровень шума. Чем это соотношение выше, тем звуковая система качественнее. Снижение этого параметра до 75 дБ недопустимо.
Суммарные нелинейные искажения - отражает влияние искажений, вносимых отдельными каналами усиления звука и шумов, генерируемых самой платой. Он измеряется в процентах от уровня неискаженного выходного сигнала. Устройство с уровнем нелинейных искажений более 0.1% не может считаться качественным. Нелинейные искажения болеепроявляются в виде искажения качества воспроизводимого звука (хрипы).
Динамический диапазон. Выраженная в децибелах разность между max и min сигналом, которую плата может пропустить. В идеальной цифровой аудиосистеме динамический диапазон должен быть близок к 98 дБ.
Каждый звук характеризуется частотой и интенсивностью (громкостью). Частота (тон) - это количество звуковых колебаний в секунду; она измеряется в герцах (Гц). Цикл (период) - это одно замкнутое движение источника колебания (туда и обратно). Чем больше частота, тем выше тон.
Человеческое ухо воспринимает лишь небольшой диапазон частот. Очень немногие слышат звуки ниже 16 Гц и выше 20 кГц (1 кГц = 1000 Гц). Частота звука самой низкой ноты на рояле равна 27 Гц, а самой высокой - чуть больше 4 кГц. Наивысшая звуковая частота, которую могут передать радиовещательные FM-станции, - 15 кГц.
Просто удивительные коэффициенты сжатия в формате MP3 по отношению к обычным файлам WAV с качеством музыкального компакт-диска как раз и объясняются тем, что из волнового образа звуковой дорожки “вырезаются” все частоты, не слышимые человеческим ухом.
Громкость звука определяется амплитудой колебаний. Амплитуда звуковых колебаний зависит, в первую очередь, от мощности их источника. Например, струна пианино при слабом ударе по клавише звучит тихо, поскольку диапазон ее колебаний невелик. Если же ударить по клавише посильнее, то амплитуда колебаний струны увеличится. Громкость звука измеряется в децибелах (дБ). Шорох листьев, например, имеет громкость около 20 дБ, обычный уличный шум - около 70 дБ, а близкий удар грома - 120 дБ.
В современных компьютерах аппаратная поддержка звука может быть реализована в одной из следующих форм:
· звуковая плата, устанавливаемая в разъем шины PCI – дискретные звуковые карты;
· микросхема AC"97 на системной плате, выпускаемая компаниями Crystal, Analog Devices, Sigmatel, ESS, Realtek и др.
· звуковые устройства, интегрированные в основной набор микросхем системной платы; в разряд недорогих наборов микросхем, обладающих подобными возможностями, входят продукты компаний Intel, SiS, AOpen и VIA Technologies.
· Внешние подключены через USB.
Общее правило здесь такое: чем дороже материнская плата, тем более качественный звуковой чип на нее припаивают.
Большинство звуковых плат имеют одинаковые разъемы. Через эти миниатюрные (1/8 дюйма) разъемы сигналы подаются с платы на акустические системы, наушники и входы стереосистемы; к аналогичным разъемам подключается микрофон, проигрыватель компактдисков и магнитофон. Ноутбуки обычно оборудованы всего двумя разъемами: линейным входом и линейным выходом. Некоторые звуковые адаптеры высокого класса дополнительно содержат разъемы для подключения устройств воспроизведения объемного и цифрового звука стандартов 5.1 и 7.1.
На рисунке показаны четыре типа разъемов, которые обязательно должны быть установлены на вашей звуковой плате. А на втором рисунке представлены стандартные разъемы, которые обычно присутствуют на задней панели материнской платы с интегрированным звуком.
Ниже перечислены разъемы, которые обычно содержит звуковая плата, и указана их цветовая маркировка.
· Линейный выход (салатовый). Сигнал с этого разъема можно подать на внешние устройства - акустические системы, наушники или вход стереосистемы. В последнем случае сигнал может быть дополнительно усилен. Как показано на предыдущем рисунке, в некоторых системах салатовая маркировка используется и для определенных разъемов объемного звука, так что внимательно присмотритесь к дополнительным значкам возле разъема или загляните в документацию.
· Линейный вход (голубой) . Этот входной разъем используется при микшировании звукового сигнала, поступающего от внешней аудиосистемы, и/или его записи на жесткий диск. Некоторые звуковые адаптеры (в частности, Creative Labs Sound Blaster XFi Xtreme Gamer, показанный на первом рис1) используют многоцелевой разъем (в данном примере - FlaxiveJack) для поддержки различных комбинаций линейного входа, подключения микрофона и цифрового оптического входа/выхода (см. документацию к адаптеру).
· Разъем для тыльных колонок и наушников (стандартный цвет отсутствует). Практически все современные звуковые адаптеры и настольные системы с интегрированным звуком содержат разъемы для подключения тыловых, центральной и низкочастотной колонок, которые используются в системах объемного звука стандарта 5.1 и выше. Системы, поддерживающие стандарт 5.1, имеют три разъема: один - для фронтальных (стерео), второй - для тыльных (стерео) и третий - для центральной и низкочастотной (сабвуфер) колонок. Системы с поддержкой стандартов 6.1 и 7.1 могут содержать дополнительный разъем или переназначить с помощью программы для обеспечения дополнительного выхода разъемы тыловых и центральной/низкочастотной колонок. В зависимости от конкретного драйвера для обеспечения объемного звука может понадобиться программа установки, предоставленная производителем. Правда, в некоторых случаях переключения в режим объемного звучания в настройках звука в операционной системе оказывается вполне достаточно.
· Микрофонный вход (розовый). К этому разъему подключается микрофон для записи на диск голоса или других звуков. Запись с микрофона является монофонической. Для повышения качества сигнала во многих звуковых платах используется автоматическая регулировка усиления (AGC). Уровень входного сигнала при этом поддерживается постоянным и оптимальным для преобразования. Для записи лучше всего использовать электродинамический или конденсаторный микрофон, рассчитанный на сопротивление нагрузки от 600 Ом до 10 кОм. В некоторых дешевых звуковых платах микрофон подключается к линейному входу.
В дополнение к внешним разъемам некоторые старые звуковые адаптеры имеют один 4-контактный разъем непосредственно на плате - специальный кабель соединяет его с приводом компакт-дисков. Этот кабель обеспечивает прямую передачу звука с музыкальных компакт-дисков непосредственно на адаптер для воспроизведения в акустических системах. Этот тип разъема иногда совпадает с аналогичным разъемом привода CD-ROM.
Проигрывание музыкальных компакт-дисков выполняется одним из следующих способов: звук воспроизводится либо в аналоговой, либо в цифровой форме. Воспроизведение в аналоговой форме осуществляется с помощью аналогового аудиокабеля, соединяющего накопитель со звуковой платой. Этот кабель не передает системной шине данные, которые считываются с компакт-диска; он соединяет аналоговый аудиовыход накопителя CD-ROM непосредственно с усилителем звуковой частоты, размещенным на звуковой плате. Во многих случаях для проигрывания музыкальных компакт-дисков или прослушивания звукового сопровождения, имеющегося во многих компьютерных играх, требуется соединить дисковод CD-ROM со звуковой платой с помощью аудиокабеля.
Современные звуковые адаптеры (включая интегрированные) поддерживают как цифровое воспроизведение, так и прямое аналоговое подключение. Чтобы определить, поддерживается ли цифровое воспроизведение, откройте диалоговое окно свойств привода оптических дисков. Для этого в Диспетчере устройств Windows щелкните правой кнопкой мыши на элементе устройства CD-ROM и выберите в контекстном меню пункт Свойства. Обратите внимание на флажок Использовать цифровое воспроизведение вкладки Свойства: если он недоступен (т.е. не позволяет установить отметку), значит, карта или устройство не поддерживает цифровое воспроизведение.
Оцифрованный звук позволяет использовать различные накопители для проигрывания музыкальных компакт-дисков. Фактически звуковая плата имеет только один аналоговый разъем, поэтому при наличии нескольких накопителей на оптических дисках только один из них, подключенный к звуковой плате с помощью аналогового кабеля, может воспроизводить музыкальные компакт-диски. Чтобы проигрывать аудиодиски на нескольких накопителях, придется активизировать цифровой выход в этих накопителях либо приобрести Y-образный аудиокабель. Цифровой выход или подключение накопителя с помощью аналогового аудиокабеля дает возможность проигрывать музыкальные компакт-диски на любом накопителе CD-ROM/DVD.
Разъемы и их названия.
Во-первых. разъем состоит из двух частей. Гнездо - это куда втыкают. Штекер - это то, что втыкают.
монофонический джек, или TS. Гильза до черного кольца - земля, кончик - сигнал
стереофонический джек, или TRS. Гильза до первого кольца - земля, контакт между черными кольцами (Ring) - правый канал либо отрицательная фаза либо питание, кончик - левый канал либо сигнал с положительной фазой
Мини-джек - как в наушниках для плейера. Выглядит как большой джек, только меньше - 3.5 миллиметра (1/8). В последнее время в мобилках и плейерах используется иногда и малюсенький джек на 2.5 миллиметра, но его не называют мини-джеком.
миниджек, знакомый вам по плейерам
Тюльпан, или RCA jack - встречается на профессиональных звуковых картах (для линейных входов и выходов), а также на бытовых видеомагнитофонах и старых VHS-видеокамер. Поскольку таких разъемов обычно два (левый и правый каналы), то правый разъем-канал имеет черный цвет, если есть черный и красный разъемы; и правый канал - красного цвета, если есть белый и красный разъемы. Изначально "тюльпан" был разработан еще в сороковых годах прошлого века для подключения радио к граммофонам. Тюльпан используется часто как разъем цифрового интерфейса S/PDIF.
тюльпаны обыкновенные
тоже тюльпан, только прикидывается рыцарем
XLR (реже XLR-3, "кэнон" или "канон", правильнее Cannon - не путать с Canon) - обычно встречается на микрофонах. Такой массивный разъем с тремя штырьками и защелкой.
Каждый нормальный микрофон имеет разъем XLR, а уже к нему подключается кабель. Кабель же может заканчиваться как еще одним XLR, так и обыкновенным джеком. Если у вас нет микшера, куда вы можете воткнуть XLR, то вам нужен кабель с джеком. Джек вы сможете подключить к бытовой звуковой карте посредством переходника с обычного джека на мини-джек. Поскольку разъемы линейного выхода, а также линейного входа и микрофонного входа находятся на звуковухе в непосредственной близости друг от друга, то нередко этот переходник просто не втыкается рядом с мини-джеком, идущим к колонкам. Поэтому надо покупать сей переходник не в цельнометаллической оболочке, а в пластмассовой. Ее можно обрезать ножом с одной стороны и обмотать изолентой. Тогда воткнется без труда.
Цвета "бытовых" разъемов
Вы могли обратить внимание, что зачастую штекеры и гнезда имеют определенные цвета - например, микрофонный штекер и гнездо под него - розовые, а наушники - светло-зеленый. Это не прихоть производителей, а следование ими стандарта PC 99. Ниже я привожу эти цвета и их описания.
Прошло уже несколько лет с тех пор как первый раз «открыл входа» звуковой карте по статье О.Шмелёва «Компьютерный измерительный комплекс» . Очень удобная и, я бы даже сказал, нужная вещь при настройке и проверке всевозможных звуковых трактов с помощью программ типа SpectraLab или . Постоянные уровни посмотреть, АЧХ проверить, да и просто записать временной файл в память для последующего сравнения или внимательного просматривания сигналов – очень даже часто приходится делать… Но каждый раз, как пользуюсь этой звуковой картой, думаю, что надо было вынести входной разъём на переднюю панель системника, поставить переключатели «входной делитель на 10» (или даже на 100) и «открытый/закрытый вход». То есть, приблизиться к привычным удобствам осциллографа.
И тут случайно попалась в руки старая PCI-ная звуковая карточка VIA TREMOR. Ну, всё, думаю, теперь точно входной блок сделаю. Размещу все дополнительные детали в корпусе от старого CD-привода, поставлю на его рожице переключатели и соединю всё это со звуковой картой куском сигнального кабеля от монитора – в нём много проводников, он экранированный, а некоторые проводники даже дважды – всё должно получиться…
Начал курочить привод…
Да, сначала, наверное, надо объяснить, зачем что-то переделывать в звуковой карте, когда кажется, что чего же там сложного – убери конденсаторы по входу, и получишь «открытый вход». Но дело в том, что на входных ножках кодека присутствует постоянное напряжение (около 2,5 вольт), нужное ему для работы. Если оно равно внутреннему образцовому потенциалу, относительно которого аналого-цифровой преобразователь отслеживает изменения входного сигнала, то горизонтальная линия, рисуемая осциллографом программы, будет идти по нулевой отметке шкалы. Если уменьшить это напряжение, допустим, на 1 В, то и горизонтальная линия осциллографа уплывёт вниз на 1 В. И получается, что если просто убрать конденсатор из входной цепи, то подключаемый источник сигнала, в случае отсутствия у него на выходе конденсатора, будет просаживать это постоянное напряжение. Поэтому и приходится добавлять дополнительные цепи чтоб «обойти» это препятствие. Задача, в общем, несложная и решается на уровне начального изучения схемотехники с применением операционных усилителей (рис.1 ) . Если нижний по схеме вывод резистора R2 будет заземлён, то при подаче на вход ОУ сигнала уровнем 0,25 В, на выходе получаем уровень, равный 0,25*(1+(R3/R2). Если же при одинаковых сопротивлениях резисторов R2 и R3 на нижний вывод резистора R2 подать постоянное отрицательное напряжение 2,5 В, то на выходе ОУ получим постоянное положительное напряжение 2,5 В. Если номинал резистора R1 не превышает 100 кОм, то при применении в данной схеме операционных усилителей общего назначения с достаточно большим входным сопротивлением, можно сказать, что входное сопротивление каскада равно сопротивлению резистора R1.
Конечная схема входного блока получилась небольшая. Половину места на плате занимают стабилизатор питания и фильтры. Без них здесь не обойтись – ключевые преобразователи питания компьютера и процессора создают большой электромагнитный «фон», который наводится на любой находящийся в корпусе системника проводник, будь он питающий или сигнальный.
Но, начнём по порядку.
Итак, начал курочить привод. Отпилил лишнюю пластмассу – места свободного много… Прикинул, что и как будет крепиться… По схеме (рис.2 ) сигналы со входного разъёма J поступают на переключатели S1 и S2, коммутирующие открывание или закрывание входов. При размыкании переключателей нижняя частота среза по уровню -3 dB становится около 1,2 Гц если не включены делители на 10 (S3 и S4) и около 3 Гц при включении этих делителей. Все переключатели раздельные, т.е. не спаренные - это позволяет выбирать разные режимы в разных каналах. От того, включены или нет делители на 10, зависит входное сопротивление блока. При их разомкнутом состоянии Rвходное примерно равно 86 кОм (R1+R3+R7 или R2+R4+R8), а при замкнутом – 37 кОм (R1+R3+R5 или R2+R4+R6). Конечно, можно эту часть схемы выполнить и по-другому, например, как показано на рисунке 3 - чтобы при включении делителя на 10 входное сопротивление увеличивалось так же в 10 раз (примерно) - до 870 кОм. Но при этом надо учитывать изменение частоты среза фильтра НЧ, образованного резисторами R1R5 и суммарной ёмкостью, состоящей из ёмкости ограничительных диодов, входной ёмкости операционного усилителя и ёмкости монтажа. Здесь важно не столько то, что частоты начинают «заваливаться», сколько то, что сдвиг фазы сигнала начинается уже с 3-5 кГц, а это уже бывает критично при некоторых фазных измерениях. При расчёте этих цепей удобно пользоваться программой (файл для расчёта прилагается во вложении к статье).
Рис.3
Вернёмся к схеме на рисунке 2
. Диоды VD1…VD12 защищают ОУ от больших входных сигналов, ограничивая их по амплитуде до уровня 1,7-2,2 вольта. В зависимости от того, с какой чувствительностью по входу применяется звуковая карта, может понадобиться установка цепочек из меньшего количества последовательных диодов.
Как видно по схеме, резисторы, обеспечивающие вышеуказанные входные сопротивления блока, являются так же делителями входного сигнала даже без включения S3 и S4. Это сделано специально для компенсации усиления, вызванного неодинаковостью сопротивлений резисторов в обратной связи операционных усилителей (R2 и R3 по нумерации рисунка 1 ). Происходит это из-за того, что R2 в реальной схеме по рисунку 2 состоит из нескольких – R9,R11,R12,R16 и R19, выполняющих функцию образования на выходе блока напряжения +2,5 В и позволяющих менять его уровень в пределах от 2,4 до 2,6 В. Это необходимо для коррекции дрейфа выходного напряжения +2,5 В, появляющегося с прогревом элементов как во входном блоке, так и в кодеке звуковой карты. Так же, при работе в программе SpectraPLUS иногда возникает потребность сместить один из графиков по вертикали, что можно сделать, крутанув один из движков резисторов R11 и R14, установленных на передней панели блока.
На выходах ОУ стоят делители R21R23 и R22R24, ослабляющие сигнал примерно на 3,5 dB. Сделано это для того, чтобы ослабить шумы, возникающие в ОУ. Этого можно и не делать и убрать R21 и R22, но тогда надо увеличить сопротивления резисторов R19 и R20 примерно до 6,8 кОм для того, чтобы на выходе блока постоянное напряжение было +2,5 В. Резисторы R23 и R24 установлены не на плате входного блока, а в звуковой карте на входе кодека. Это позволяет ослабить наводки на сигнальные проводники соединительного кабеля.
Стабилизатор -5 В - стандартная микросхема 7905. Можно поставить и слаботочную 79L05. Фильтрация напряжений 12 В выполнена на LRC элементах. Все электролитические конденсаторы желательно применить с ёмкостью более 1000 мкФ, а дроссели с индуктивностью более 47 мкГн, но в разумных пределах – иначе, при большой индуктивности, импульсные помехи будут проходить через дроссель по межвитковой ёмкости.
Все детали, кроме входного разъёма J, переключателей S1…S4, конденсаторов С1 и С2 и резисторов R11, R13 установлены на фольгированной односторонней печатной плате размером 110х60 мм (рис.4 ) (файл платы в формате программы находится во вложении к статье). Монтаж платы – поверхностный, никаких отверстий сверлить не надо, даже для выводных деталей. Все диоды – КД522 (или КД521) с почти полностью откушенными выводами. Резисторы R1, R2, R5 и R6 – МЛТ, одним выводом припаяны к печатной дорожке, а к другому припаяны провода, идущие от переключателя. Все остальные резисторы и все керамические конденсаторы – smd 0805. Все электролитические конденсаторы лежат на плате и приклеены к ней термоклеем. Дроссели в фильтрах можно применить как отечественные выводные, так и импортные. Операционные усилители - КР140УД608, можно заменить на любые другие общего назначения, главное, чтоб они имели входное сопротивление более 300-400 кОм.
Настраивать собранную плату с подпаянными переменными резисторами можно на столе, впаяв резисторы R23 и R24 и подав на плату двуполярное напряжение от лабораторного источника питания. Убедившись в наличии питания на выводах ОУ и -5 В, надо настроить резисторами R12R14 уровень +2,5 В в точках соединений выходных делителей R21R23 и R22R24. Если что-то не так, подобрать сопротивления R19 и R20. Затем нужно проверит входные цепи, подавая на вход переменные и постоянные напряжения и контролируя их на выходе ОУ. При желании иметь другой коэффициент деления нужно подобрать сопротивления резисторов R5 и R6.
Переключатели S1…S4 марки МТ1 можно заменить на П1Т-1-1. Закреплены они на металлической пластине подходящего размера (рис.5 ). Пластина коротким проводником соединяется с корпусом CD привода. Конденсаторы С1 и С2 – К73-17 ёмкостью 1,5 мкФ на напряжение 160 В, припаяны прямо к выводам S1 и S2. Входное гнездо используется родное CD привода (3,5 мм). Резисторы R11 и R14 взяты с плат старых мониторов. Впаяны в небольшую платку, которая вставляется в предварительно пропиленные пазы в передней части пластмассового каркаса привода (рис.6 ).
Рис.6
Под размер пластикового каркаса была выпилена монтажная плата из фольгированного текстолита (рис.7
). Чтобы она встала по месту, в ней пропилены пазы и просверлены отверстия. Можно, конечно, сделать плату и не из текстолита, но для того чтобы она нормально крепилась, её толщина должна быть около 1,5 мм.
Плата входного блока установлена на монтажной на латунных стойках от материнских плат (рис.8
). Под шляпку крепёжных винтов подложены гетинаксовые шайбы, чтобы «земля» платы гальванически не соединилась с корпусом привода, а через него с корпусом системника. Если этого не делать, то через соединительный кабель получится «земляная петля», на которую будут наводиться помехи от электромагнитных импульсов преобразователей.
Схема коммутации входного блока со звуковой картой показана на рисунке 9
. Соединение «земель» обоих устройств происходит только по одному проводу – светло-коричневому.
На рисунках 10
, 11
и 12
показан общий вид и питающий разъём, установленный на задней стенке пластикового каркаса. Разъём взят со старой видеокарты – выпилен прямо с куском печатной платы. Все «земельные» проводники, соединяющие некоторые ножки разъёма между собой, перерезаны. Это сделано всё по той же причине – «земли» должны соединяться в одном месте на звуковой карте. Показанная печатная плата немного отличается от приведенной выше в тексте - на фото вариант с питанием ОУ напряжениями +/-5В и некоторые отличия в дополнительных SMD компонентах, но это не принципиально.
Рис.11
Рис.12
Как я уже говорил, звуковая карта использовалась старая - VIA TREMOR с кодеком VТ1617A. Её чувствительность около 1 V(rms) – дальше она начинает сильно перегружаться. Карта оказалась очень шумливой в используемом компьютере (рис.13
) и потребовала небольшой доработки, связанной с фильтрацией питания.
Сначала перерезал дорожки питания микросхем VT1723 и VT1617 (красные метки соответственно слева и справа по рисунку 14
):
Затем навесным монтажом, прямо на плате, распаял CLC фильтр для VT1723 и стабилизатор для VT1617 (рис.15
, рис.16
и рис.17
). Слева на рисунке 15
буква «А» и следующие за ней цифры – это указаны номера контактов шины PCI со стороны «А».
Рис.16
Рис.17
На рисунке 17
виден проводник, идущий от левой ножки резистора МЛТ ко 2 контакту шины PCI. Это подключение к +12 В. Тонкий провод МГТФ аккуратненько подпаивается к самому краю контактной дорожки. Если получится большая капля припоя – то она может мешать устанавливать карту, упираясь в пластиковый корпус разъёма. На рисунке 18
более подробно показано место припайки провода к контакту -12 В.
Если, вдруг, у карты на шине не окажется контактов +/- 12 В, то их можно сделать, вырезав из медной фольги и приклеив клеем БФ. Так пришлось делать на карте C-MEDIA по питанию -12 В. Прошло уже более трёх лет, сейчас она стоит уже в третьем компьютере и выдержала за это время несколько десятков «передёргиваний».
На рисунке 19 общее фото доработанной карты VIA TREMOR. Виден закреплённый двумя винтами кусок текстолита, к которому жестко закреплён кабель. Обе поверхности этой крепёжной платы заземлены, а на одной из них вырезаны площадки, к которым подпаиваются провода. Входные конденсаторы по линейному входу выпаяны, а к пятачкам дорожек, что идут в кодек, припаяны провода МГТФ, идущие к сигнальным (красному и зелёному) проводам кабеля. Все оплётки, экраны и свободные проводники кабеля припаяны к «земле» на крепёжной плате.
После всех этих экзекуций и установки дополнительных электролитических конденсаторов по питанию в разных местах звуковой платы, шумы стали меньше (рис.20
), но, к сожалению, всё равно осталась помеха частотой 46,88 Гц и её нечётные гармоники. Они, конечно, уменьшились почти в два раза, но это не тот результат, который хотелось бы получить.
Чем образована эта помеха, пока не разобрался. Но, учитывая, что её уровень менее 100 мкВ (rms), а на частотах выше 1 кГц её гармоники ниже 110 dB, то вполне можно не принимать её во внимание, особенно в режиме осциллографа. Конечно, не удержался и посмотрел, что она из себя представляет. На рисунке 21 видно, что помеха носит цифровой характер, возникает синхронно в обоих каналах и имеет примерно одинаковый уровень – скорее всего, наводится от преобразователя питания процессора. Помогла установка резисторов R23R24 3,9 кОм от входов кодека на землю (при работе вместе со входным блоком). Уровень основной частоты упал до -90 dB, а гармоники выше 5-той ослабились почти до уровня шума. Подпайка дополнительных электролитических конденсаторов по питанию в звуковой карте и керамических по питанию процессора и в блоке питания ощутимых результатов не принесла. Экранировка карты мягкой жестью и «отвязка» от корпуса компьютера тоже не увенчались успехом.
На графике заметно плавное увеличение потенциала в положительную сторону. На самом деле это смещение связанно с нестабильностью питания ОУ и оно не плавное, а хаотичное и находится в диапазоне частот от 0 до 10 Гц. Но уровень этих низкочастотных флуктуаций достаточно мал – не более 1-2 мВ, и при желании, легко лечится установкой стабилизаторов напряжения питания ОУ (такой вариант печатной платы тоже есть во вложении).
На рисунке 22 помеха с предыдущего рисунка, но увеличенная по времени:
При использовании совместно с входным блоком другой звуковой карты (на кодеке CMI8738) эта помеха отсутствует. Возможно, что у карты VIA некорректно разведена «земля» - уж очень там всё примитивно…
Теперь про установки параметров в программе SpectraPLUS и её калибровке. Говорят, что в сети есть описание, как это надо делать правильно, но мне с ним «пересечься» не удалось, поэтому пришлось вспоминать метрологию. И насколько вспомнил, для того чтобы пользоваться устройством как измерительным прибором, надо привязать шкалы программы к реально присутствующим уровням сигналов на входе (здесь рассматриваем звуковую карту и входной блок уже как единое целое).
Образцовый синусоидальный сигнал частотой 1 кГц взял с генератора низкой частоты Г3-118. Уровень контролировал вольтметром прибора ВР-11А и осциллографом. Схема соединений показана на рисунке 23 .
Сначала в меню общей громкости программы Windows находим нужную звуковую карту и в настройках выбираем её для работы на вход и ставим галочку только напротив строки «Лин. вход». Движок-регулятор, отвечающий за чувствительность, выставляем пока в среднее положение.
Андрей Гольцов, r9o-11, г. Искитим, весна 2014.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот | |
---|---|---|---|---|---|---|---|
Рисунок 2 | |||||||
OP1, OP2 | Операционный усилитель | КР140УД608 | 2 | В блокнот | |||
VR1 | Линейный регулятор | LM79L05 | 1 | В блокнот | |||
VD1-VD12 | Диод | КД522А | 12 | В блокнот | |||
R1, R2 | Резистор | 33 кОм | 2 | МЛТ-0,25 | В блокнот | ||
R3, R4, R21, R22 | Резистор SMD 0805 | 2.2 кОм | 4 | R3, R4 подбирать (см. текст) |
Звуковая плата – неотъемлемая часть современного компьютера, использующаяся для воспроизведения звука. В этой главе мы поговорим о развитии и разных типах звуковых плат.
Разъемы звуковой карты
Разъемы звуковой карты довольно миниатюрные и все «на одно лицо» – маленькие и круглые. Чтобы вы не перепутали их, был принят стандарт PC99 Design Guide, в котором четко указан цвет для каждого разъема:
салатный – линейный выход. К этому разъему можно подключить акустическую систему, наушники, стереоусилитель, позволяющий поднять сигнал, если используется мощная акустическая система. На некоторых звуковых картах есть два выхода – один для левого канала, а другой – для правого;
голубой – линейный вход. Используется для записи звука, который поступает от внешнего источника (например, музыкального центра) на жесткий диск ;
розовый – вход для микрофона или монофонического сигнала (каковым и является сигнал микрофона). Если у звуковой платы нет микрофона, его можно подключить к линейному входу;
желтый – игровой порт, используется для подключения джойстика или MIDI-устройства (синтезатора). Иногда вместо этого разъема используется D-образный 15-контактный разъем.
На встроенных звуковых платах (а таких большинство) отсутствует игровой порт. Тем не менее, чтобы он появился, совсем не обязательно менять звуковую плату – достаточно подключить игровой порт по USB (данное устройство подключается отдельно). Да, современные джойстики и синтезаторы можно подключать по USB , поэтому как таковой необходимости в игровом разъеме нет.
При использовании отдельной звуковой платы (в виде карты расширения) желательно подсоединить ее к приводу CD/DVD с помощью специального кабеля (рис. 12.1) – иначе вы не сможете воспроизводить AudioCD. Правда, современные операционные системы умеют обходиться и без этого кабеля, но о его существовании вы должны знать. На рис. 12.2 изображена отдельная звуковая плата. Порт для подключения CD находится на самой плате с внутренней стороны, то есть кабель будет проходить внутри корпуса, а не снаружи.
//-- Рис. 12.1. Кабель для подключения звуковой карты к CD-ROM --//
//-- Рис. 12.2. Отдельная звуковая плата --//
На рис. 12.3 изображен типичный привод CD-ROM с описанием разъемов задней панели. Один из них используется для подключения звуковой платы.
Рис. 12.3. CD-ROM с описанием разъемов задней панели
На рис. 12.4 изображена звуковая карта, подключающаяся к компьютеру по USB . Чтобы такая звуковая карта заработала, нужно сделать следующее:
удалить драйверы имеющейся звуковой карты (это можно сделать в Диспетчере устройств) – как правило, это будет внутренняя звуковая плата;
Рис. 12.4. Звуковая карта (USB)
Отключить в SETUP внутреннюю звуковую плату (см. ниже);
загрузить Windows;
подключить звуковую плату USB и установить драйверы, если нужно.
Подключение отдельной звуковой карты
Для подключения отдельной звуковой карты нужно выполнить следующие действия:
нажмите Win + Break (или выполните команду меню: Пуск, Настройка, Панель управления, Система) для открытия окна Свойства системы;
в появившемся окне перейдите на вкладку Оборудование и нажмите кнопку Диспетчер устройств (рис. 12.5);
//-- Рис. 12.5. Свойства системы --//
в окне Диспетчер устройств (рис. 12.6) раскройте группу Звуковые, видео и игровые устройства. Удалите звуковую плату (на рисунке – VIA AC’97 Enhanced Audio Controller);
перезагрузите компьютер;
при загрузке войдите в SETUP (обычно клавиша DEL). Перейдите в раздел Advanced, затем в Integrated Peripherals (иногда сразу в корневом меню есть раздел Integrated Peripherals – все зависит от версии BIOS);
отключите встроенную звуковую плату. Обычно нужно установить значение Disabled для опции Onboard AC97 Audio Controller;
сохраните изменения (F10) и выключите компьютер;
отключите кабель питания от компьютера, снимите крышку системного блока и установите отдельную звуковую плату в слот PCI или PCI-E (зависит от звуковой платы);
включите питание компьютера, загрузите Windows и установите драйверы звуковой платы, если это будет необходимо (вдруг Windows знает вашу звуковую карту?);
перезагрузите компьютер. Все, звуковая плата готова к использованию.
//-- Рис. 12.6. Диспетчер устройств --//
Для чего нужны те или иные разъёмы компьютера на его задней стенке? Как подключить монитор? Куда воткнуть микрофон или многоканальную акустику? Обо всём этом читайте в статье, посвящённой компьютерным портам.
Если спросить у людей старшего поколения или не слишком продвинутых пользователей, что такое компьютер, то они, в большинстве своём, покажут нам на монитор. Но, мы-то знаем, что компьютер - это то, что находится внутри системного блока (который некоторые называют процессором:))).
Однако, даже самая совремненная рабочая станция или геймерский ПК не являются самодостаточными и не могут функционировать без подключения к ним различных устройств. Как минимум нам нужен монитор, мышь и клавиатура... Однако, это далеко не всё, что можно подключить к компьютеру. На его задней стенке находится куча разъёмов, позволяющих подсоединить буквально что угодно!
О предназначении самых распространённых портов Вы, скорее всего, знаете, однако у каждого есть пара-тройка "дырок", назначение которых вызывает сомнения. Если хотите узнать всё о компьютерных разъёмах, тогда статья ниже именно для Вас.
Минимальный набор разъёмов
Набор портов на задней стенке компьютера у всех может быть разным. Это зависит от того, насколько старый ПК, кто является производителем материнской платы или какие карты расширения у Вас установлены. Однако, есть некоторые разъёмы, которые присутствуют у всех:
- Порты PS2 для мыши и клавиатуры (в современных ПК могут отсутствовать или быть представлены одним совмещённым портом).
- Разъём подключения стандартного монитора (VGA или DVI).
- Сетевой порт стандарта RJ-45 для подключения к Интернету или локальной сети.
- Несколько универсальных USB-портов.
- Разъёмы аудиокарты (если установлена).
В этот список можно также добавить разъём подключения в электросеть на блоке питания (обычно находится в самом верху системного блока). Однако, по-сути, он не служит для подсоединения к компьютеру какой-либо периферии и должен быть априори, чтобы обеспечить работу ПК.
Все вышеперечисленные порты обычно имеются на материнской плате. Однако, существуют платы, на которых, например, нет отдельных разъёмов под мышь и клавиатуру или отсутствуют разъёмы видео-/аудиокарт. В таком случае недостающие порты можно компенсировать только подключением соответствующих плат расширения с ними. Без них работать за ПК не выйдет.
Правда, есть один нюанс. Вместо подключения новых плат можно воспользоваться внешними девайсами, заменяющими их по функционалу. Подключить такие девайсы (например, USB-мышь и клавиатуру или внешнюю видеокарту) к компьютеру можно при помощи универсальных портов.
Универсальные разъёмы
Последовательный порт
Ещё когда о персональных компьютерах не было и речи, разработчики уже задумались над созданием универсального интерфейса для подключения различных периферийных устройств. Так в конце 1969 года появился стандарт RS-232 (сокр. англ. "Recommended Standard"), который являл собой 9-контактный (реже 25-контактный) разъём, получивший в обиходе название COM-порт или последовательный порт:
Изначально COM-порт (от англ. "communications port") использовался для подключения к компьютеру консоли, заменявшей монитор. С появлением традиционных дисплеев к нему стали подключать мышь или модем. А с распространением ПК последовательный порт начали широко использовать для подключения различной техники, вроде сканеров штрих-кодов, кассовых аппаратов, консолей видеонаблюдения и т.п.
В наше время этот разъём практически не используется, поскольку был вытеснен более передовым USB-портом. На различных же предприятиях, где RS-232 ещё в ходу, часто используют внешний COM-порт в виде USB-переходника.
Параллельный порт
Ещё одним анахронизмом, который можно встретить на некоторых материнских платах, является так называемый, параллельный порт или LPT (сокр. англ. "Line Print Terminal" - "порт терминала печати"):
Как видно из названия, данный разъём изначально (в 1981-году) был разработан как стандартизированный порт подключения принтеров, сканеров и подобных им устройств. Своё простонародное название "параллельный" этот порт заслужил тем, что, в отличие от COM-порта, мог передавать параллельно несколько потоков данных.
Стандартный LPT-разъём, который обычно можно встретить на не слишком старых ПК, имеет 25 контактов. Из-за этого его часто путают с 25-пиновым COM-портом. Однако, между ними есть существенная разница: COM-порт - всегда имеет тип "папа" (со штырьками), а LPT - "мама" (с дырочками):
Как и последовательный, параллельный порт со временем стал использоваться не только для подключения принтеров. С его помощью, например, можно было организовать прямую передачу данных с компьютера на компьютер, подсоединять запоминающие устройства, а также различные контрольно-измерительные и сигнальные приборы.
USB
В современных компьютерах параллельный порт, как и последовательный, практически повсеместно вытеснили более скоростные и современные разъёмы. Основным из них, без сомнения, можно назвать USB (сокр. англ. "Universal Serial Bus" - "универсальная последовательная шина"), который появился в 1995 году и актуален по сей день:
Как видно из названия, USB передаёт данные последовательно, однако, с более высокой частотой, нежели устаревший COM-порт. За счёт этого в современных соединениях на базе USB 3.0 становится реальным достижение скоростей передачи данных вплоть до 10 Гбит/с (режим Super-speed). Правда, наиболее распространённый USB 2.0 работает значительно медленнее и обеспечивает один из трёх режимов:
- Low-speed - от 10 до 1500 килобит в секунду (принтеры, сканеры, мышки и другие устройства ввода).
- Full-speed - от 0.5 до 12 мегабит в секунду (устройства видеозахвата, внешние аудиокарты, современные принтеры и сканеры).
- High-speed - от 25 до 480 мегабит в секунду (внешние видеокарты, внешние жёсткие диски).
Модификаций у USB-портов существует довольно много, что свидетельствует об их востребованности и популярности, однако в компьютерах обычно можно встретить только разъёмы типа А. На материнских платах, которые выпускались до 2011 года можно встретить только порты USB 2.0, однако, современные ПК могут быть оснащены и портами USB 3.0, которые имеют синюю или красную маркировку.
USB поистине универсален. Имея всего 4 проводника (в версии 3.0 добавили ещё 5), этот разъём позволяет одновременно передавать и получать данные, а также осуществлять питание подключаемых устройств током в 5 вольт (500 миллиампер для версии 1.0-2.0 и до 1 ампера для 3.0). Это позволило применять USB практически в любых устройствах, которые только можно подключить к ПК.
FireWire
Однако, не один лишь USB актуален сегодня. В том же 1995 году на свет появилась спецификация IEEE 1394, которая получила известность под маркой FireWire от всем известной компании Apple:
Изначально FireWire задумывался как скоростной внешний интерфейс для передачи и обработки мультимедиа-данных на лету. Этому способствовала пропускная способность от 100 до 400 мегабит в секунду. Впоследствии скорость была повышена сначала до 800 Мбит/с, а позже до 3.2 Гбит/с. Это позволило использовать порт для создания гигабитных локальных сетей и подключения внешних жёстких дисков.
Несмотря на хороший потенциал и явный выигрыш в скорости передачи данных, FireWire всё же распространён гораздо меньше, нежели USB. А с приходом высокоскоростного USB 3.0 можно предположить, что данный разъём так и останется нишевым, и будет использоваться только в профессиональной аппаратуре.
eSATA
Ещё одним "игроком" в борьбе за универсальность среди портов компьютера является разъём eSATA (от англ. "external SATA" - "внешний SATA"), появившийся на рынке в 2004-2005 годах, почти на 10 лет позже USB и FireWire:
Этот порт предназначен в первую очередь для подключения внешних жёстких дисков и обеспечивает скорость передачи данных до 3 Гбит/с. В начале разработки порт (как и обычный внутренний SATA) не имел собственного питания, однако, практически все современные материнские платы с данным разъёмом используют спецификацию eSATAp ("p" - "power").
Характерной особенностью eSATAp является совместимость со стандартными штекерами USB типа А. Внутренняя шина разъёма имеет аналогичную 4-контактную распайку и обеспечивает питание +5 Вольт. На внешние же клеммы в боковых выемках порта подаётся напряжение +12 Вольт. Правда, в ноутбуках их нет из-за нерациональности: максимальное выходное напряжение стандартных лептопов обычно не превышает 5 Вольт.
eSATA вряд ли составит сильную конкуренцию USB и FireWire в плане многофункциональности, но в деле подключения жёстких дисков у него есть огромное преимущество. Дело в том, что при подключении внешних запоминающих устройств по тому же USB сигнал должен перекодироваться в команды SATA или PATA. На что уходит дополнительное время. eSATA же передаёт данные сразу в SATA-формате, поэтому никаких задержек не происходит.
Разъёмы видеокарты
Итак, с основными распространёнными универсальными разъёмами на задней стенке компьютера, надеюсь, мы разобрались. А теперь настал черёд разобраться с портами более специализированного назначения. И в первом ряду здесь идут интерфейсы подключения монитора, которые имеются на видеокарте ПК.
Первым делом следует сказать, что видеокарты могут быть встроенными (интегрированными), дискретными (обычно на шине PCI-Express) или внешними (подключаются по USB или FireWire). Самым производительным решением являются отдельные видеокарты, которые поставляются в виде платы расширения под внутренний порт PCI-Express:
Преимущество интегрированных видеокарт в готовности компьютера к подключению монитора уже "из коробки", а также в том, что они, как правило, потребляют значительно меньше энергии, нежели дискретные. Отдельные же видеокарты являются лучшими по производительности, поскольку либо не расходуют ресурсы ПК вовсе, либо используют незначительное количество оперативной памяти для кеша.
Внешние видеокарты обычно используются владельцами ноутбуков со слабой встроенной графикой для игр или работы с видео и 3D. Они в теории могут быть не хуже дискретных, однако тут свои ограничения может накладывать тип подключения. Например, внешняя видеокарта той же модели, что и дискретная, подключённая через порт USB 2.0 будет работать значительно медленнее...
Естественно, что в зависимости от типа Вашей видеокарты на ней могут присутствовать или отсутствовать некоторые разъёмы. Рассмотрим вкратце их все.
VGA (D-Sub)
Одним из самых старых (разработан в 1987 году) портов видеокарт является 15-пиновый аналоговый видеовыход VGA (сокр. англ. "Video Graphics Adapter" - "адаптер видео графики") или D-Sub (от англ. "D-subminiature" - "D-образный субминиатюрный"):
Этот порт обычно присутствует в качестве единственного видеовыхода во встроенных видеокартах (хотя современные интегрированные карты могут быть оснащены и другими разъёмами). Он позволяет подключать к компьютеру ЭЛТ-мониторы, а также большинство ЖК-дисплеев и проекторов. Максимальное разрешение видео с порта - 1280×1024 пикселя.
S-Video (S-VHS)
Ещё одним стареньким аналоговым портом, который часто встречается на видеокартах, является разъём S-Video (сокр. англ. "Separate Video" - "раздельное видео"):
Данный порт был разработан в конце 80-х компанией JVC для подключения к ПК их видеомагнитофонов и видеокамер. Своё название разъём получил за то, что позволял передавать раздельно такие компоненты видеосигнала как яркость и цветность. За счёт этого получаемую картинку можно было довольно гибко настраивать, регулируя отдельно её цвета и насыщенность.
По сути, данный разъём был одной из первых попыток создать нечто, вроде, карты видеозахвата для оцифровки аналогового видеосигнала. На то время пропускной способности S-Video было достаточно для передачи обычного телевизионного сигнала (для современного HDTV разъём, увы, непригоден).
Порт изначально существовал в 4-пиновом исполнении, а в 90-х появилась его расширенная версия на 7 контактов. Эта версия позволила реализовать прямую совместимость S-Video с композитными разъёмами бытовой техники (телевизоры, видеомагнитофоны и камеры) типа RCA ("тюльпан").
DVI (сокр. англ. "Digital Visual Interface" - "цифровой видеоинтерфейс")
В 1999 году, когда стало окончательно ясно, что будущее не за аналоговыми технологиями, а за цифровыми, производители мониторов решили, что VGA (1987-го года выпуска) устарел и выдали новый стандарт, который получил название DVI:
DVI-порты существуют двух типов: DVI-I (с поддержкой аналогового сигнала стандарта VGA) и DVI-D (поддерживают только цифровой сигнал). Они отличаются наличием (или отсутствием) четырёх дополнительных контактных гнёзд в левой части. Зато штекеров к DVI-разъёмам имеется аж 5 видов:
- DVI-I Dual Link - штекер с самым полным набором контактов. Поддерживает передачу по одному аналоговому и двум цифровым каналам.
- DVI-I Single Link - отсутствует 9 центральных контактов. Поддерживает передачу по одному аналоговому и одному цифровому каналу.
- DVI-A - штекер для передачи данных только по одному аналоговому каналу. Используется в переходниках DVI-VGA.
- DVI-D Dual Link - удалены четыре контакта в левой части. Поддерживает передачу только по двум цифровым каналам.
- DVI-D Single Link - удалены четыре контакта в левой части и 9 в центральной. Поддерживает передачу только по одному цифровому каналу.
Современные видеокарты обычно комплектуются разъёмом DVI-I, к которому можно подключить любые DVI-штекеры. Однако, иногда на совместимости с аналоговыми устройствами экономят и ставят DVI-D. В этом случае Вы сможете подключить к компьютеру только полностью цифровой монитор. Максимальное разрешение видео с порта - 2560×1600 пикселей.
HDMI (сокр. англ. "High Definition Multimedia Interface" - "мультимедийный интерфейс высокого разрешения")
Внедрение DVI решило проблему прямой передачи цифрового видеосигнала на монитор. Однако, на практике разъём получился довольно громоздким и не совсем удобным. Поэтому уже в 2002 году ассоциацией, в которую входили такие крупные компании как Hitachi, Panasonic, Philips, Sony и другие был разработан и внедрён новый стандарт HDMI:
Порт HDMI избавился от поддержки аналоговых устройств, почти вдвое уменьшился в размерах и обрёл способность передавать не только видеосигнал, но и многоканальный звук. По сути, HDMI стал цифровым аналогом таких стандартов как SCART и RCA (в простонародье "тюльпан").
По техническим характеристикам HDMI представляет собой тот же DVI-D, но с дополнительными звуковыми проводниками. Максимальное разрешение видео с порта - 2560×1600 пикселей.
DisplayPort (с англ. "разъём дисплея")
На сегодняшний день самым новым и перспективным является, разработанный в 2006 году, разъём DisplayPort:
Как и HDMI, DisplayPort может передавать одновременно и звук, и видеосигнал. Однако, максимальное разрешение видео у него выше и составляет 3840×2400 пикселей. Также, за счёт повышенной пропускной способности, DisplayPort может передавать 3D-видеосигнал на телевизор или монитор.
Существовала также версия разъёма miniDP, однако, на сегодняшний день она практически не используется. Встретить такие порты можно, разве, в ноутбуках MacBook от компании Apple. Обычный же DisplayPort с 2010 года является практически обязательным разъёмом, поэтому его можно встретить как на современных видеокартах, так и на любой видеоаппаратуре.
Разъёмы аудиокарт
Если разъёмы видеокарт различаются по своему внешнему виду и можно сразу определить, что за порт перед нами, то на звуковых картах почти все гнёзда представляют собой обычные "мини-джеки". Осложняется всё ещё и тем, что каждый порт имеет одностороннюю передачу данных только на вход или на выход.
Обычно разобраться в разъёмах позволяет цветовая маркировка портов. Однако, есть аудиокарты, где все разъёмы, например, чёрного цвета и понять, где и что можно только по надписям или инструкции. Попробуем всё же разобраться, объединив знания о цветовой и текстовой маркировках.
MIDI-порт (от англ. "Musical Instrument Digital Interface" - "цифровой интерфейс музыкальных инструментов")
Начнём, пожалуй, c одного из самых старых и заметно отличающихся внешне разъёмов - игрового порта:
Порт имеет маркировку DA-15 (15 пин) и изначально разрабатывался в 80-х годах для подключения различных игровых манипуляторов, типа джойстик. С распространением технологии MIDI данный порт также приспособили для подключения музыкальных инструментов (в основном синтезаторов). Для этого использовался специальный MIDI-кабель с переходником на штекеры DIN-5.
В наше время джойстики и большинство музыкальных инструментов перешло на USB-шину, поэтому сегодня MIDI-порт встречается нечасто.
S/PDIF или S/P-DIF (сокр. англ. "Sony/Philips Digital Interface Format" - "формат цифрового интерфейса Sony/Philips")
В 90-х годах персональные компьютеры и полупрофессиональная бытовая электроника начали широко распространяться во всём мире. Возникла необходимость их коммутации, поэтому примерно в это время топовые звуковые карты стали оснащаться помимо прочих разъёмов ещё и портом S/P-DIF:
Данный порт предназначен для подключения аудиоаппаратуры (или аудиовыходов видеокамер и видеомагнитофонов) посредством одного из двух типов кабелей: оптического (спецификации TOSLINK) или электрического коаксильного (спецификации RCA ("тюльпан")).
В наше время S/PDIF применяется в основном для вывода звука ПК на звуковоспроизводящую аппаратуру полупрофессионального и профессионального уровней. Поддерживает передачу объёмного звука в форматах Dolby Digital и Digital Theatre System (DTS).
Mini-Jack
Вот мы и подошли к тем разъёмам, которые есть на любой звуковой карте (если это не узкоспециализированная профессиональная плата для S/PDIF, конечно). Я имею в виду те разноцветные мини-джеки, которых обычно имеется от 1 до 6 (бывает также 8 и даже 12, но это частные случаи, которые не так распространены):
Самыми распространёнными наборами мини-джеков являются 1, 3 и 6. В случае наличия только одного порта, он обычно предназначен для подключения колонок или наушников и называется линейным выходом. В некоторых ноутбуках линейный выход объединяется с входом для микрофона за счёт дополнительного контакта.
Конфигурация из 3-х мини-джеков - самая распространённая на недорогих и встроенных аудиокартах. Обычно они реализуют линейный выход (светло-зелёного цвета), а также линейный (голубой) и микрофонный (розовый) входы. Разница между линейным и микрофонным входами в том, что звук, получаемый микрофонным, проходит дополнительную обработку (шумоподавление), а в линейном никаких обработок нет.
Наконец, существуют аудиокарты с 6-ю мини-джековыми разъёмами. Здесь, добавляется три дополнительных выхода, которые позволяют подключить к ПК акустическую систему стандарта 5.1 или 7.1. Цветовая маркировка дополнительных портов у разных фирм производителей может быть разной, но чаще всего имеем чёрный, оранжевый и серый. В них подключаются боковые колонки акустики, сабвуфер и задние колонки соответственно.
Если все разъёмы на звуковой карте одного цвета, то они обязательно будут снабжены надписями с условными обозначениями портов:
- Микрофонный вход: Mic In или Mic.
- Линейный вход: Line In или Line.
- Линейный выход: Line Out, Out, Speaker или Front (подразумеваются фронтальные колонки многоканальной акустики).
- Выход на боковые колонки: Side Out или Side.
- Выход на сабвуфер: Sub Out, Sub или Sbw.
- Выход на задние колонки: Rear Out или Rear.
Ориентируясь на вышеупомянутые надписи, Вы сможете без особых проблем подключить к компьютеру любые звуковые устройства.
Выводы
Изначально мною планировалось написать небольшую обзорную статью о наиболее распространённых разъёмах компьютера. Однако, при более тщательном изучении темы начало всплывать множество нюансов, не упомянув о которых, я бы не мог сказать, что рассказал всё самое главное. Таким образом, статья получилась довольно увесистой...
К сожалению, рассмотреть все возможные порты даже в рамках получившейся "простыни" никак нельзя. Поэтому я ограничился только теми, которые можно встретить на компьютерах чаще всего, уделив пристальное внимание мультимедийным и универсальным разъёмам. На практике же при помощи дополнительных плат расширения Вы можете оснастить свой компьютер буквально любым нужным Вам интерфейсом!
Надеюсь, статья будет полезной и пригодится кому-нибудь, кто задумает подключить к ПК то или иное устройство. За сим откланиваюсь и желаю всем поменьше путаницы в компьютерных делах и в жизни вообще:)
P.S. Разрешается свободно копировать и цитировать данную статью при условии указания открытой активной ссылки на источник и сохранения авторства Руслана Тертышного.