Разделение вертикально интегрированной структуры постсоветской электроэнергетики, усложнение системы управления, увеличение доли выработки электроэнергии малой генерации, новые правила подключения потребителей (сокращение сроков и стоимости подключения) при этом повышение требований к надежности энергоснабжения влечет за собой приоритетное отношение к развитию систем телекоммуникаций.
В энергетике применяется множество типов связи (порядка 20-ти) различающиеся по:
- назначению,
- среде передачи,
- физическим принципам работы,
- типу передаваемых данных,
- технологии передачи.
Среди всего этого многообразия выделяется ВЧ связь по высоковольтным линиям (ВЛ) электропередачи, которая в отличие от остальных видов создавалась специалистами-энергетиками для нужд самой электроэнергетики. Оборудование прочих видов связи, изначально созданное для систем связи общего пользования, в той или иной степени, адаптируется к потребностям энергокомпаний.
Сама идея использования ВЛ для распространения информационных сигналов возникла при проектировании и строительстве первых высоковольтным линий (так как строительство параллельной инфраструктуры для систем связи влекло существенное удорожание), соответственно, уже в начале 20-х годов прошлого века вводятся в работу первые коммерческие системы ВЧ связи.
Первое поколение ВЧ связи было больше похоже на радиосвязь. Присоединение передатчика и приемника высокочастотных сигналов выполнялось с помощью антенны длинною до 100 м, подвешиваемой на опоры параллельно силовому проводу. Сама же ВЛ, являлась направляющей для ВЧ сигнала — в то время, для передачи речи. Антенное присоединение еще долго применялось для организации связи аварийных бригад и на железнодорожном транспорте.
Дальнейшая эволюция ВЧ связи привела к созданию оборудования ВЧ присоединения:
- конденсаторов связи и фильтров присоединения, что позволило расширить полосу передаваемых и принимаемых частот,
- ВЧ заградителей (заградительные фильтры), что позволило снизить влияние устройств подстанции и неоднородностей ВЛ на характеристики ВЧ сигнала до приемлемого уровня, и соответственно, улучшить параметры ВЧ тракта.
Следующие поколения каналообразующей аппаратуры стали передавать не только речь, но и сигналы телеуправления, защитные команды релейной защиты, противоаварийной автоматики, позволили организовать передачу данных.
Как отдельный вид ВЧ связь сформировалась в 40-ые, 50-ые годы прошлого столетия. Были разработаны международные стандарты (МЭК), руководящие указания для проектирования, разработки и производства оборудования. В 70-ые годы в СССР силами таких специалистов как Шкарин Ю.П., Скитальцев В.С. были разработан математические методики и рекомендации расчета параметров ВЧ трактов, что существенно упростило работу проектных организаций при проектировании ВЧ каналов и выборе частот, повысило технические характеристики вводимых ВЧ каналов.
До 2014 года ВЧ связь официально была основным видом связи электроэнергетики в Российской Федерации.
Появление и внедрение волоконно-оптических каналов связи, в условиях широкого распространения ВЧ связи, стало взаимодополняющим фактором в современной концепции развития сетей связи электроэнергетики. В настоящее время актуальность ВЧ связи остается на прежнем уровне, а интенсивное развитие и существенные инвестиции именно в оптическую инфраструктуру способствуют развитию и образованию новых сфер применения ВЧ связи.
Неоспоримые преимущества и наличие огромного положительного опыта применения ВЧ связи (почти 100 лет) дают основания полагать, что направление ВЧ будет актуально как в ближайшей так и в отдаленной перспективе, развитие же данного вида связи позволит решать как текущие задачи, так и способствовать развитию всей электроэнергетической отрасли.
Для передачи информации между защитами и автоматикой по концам высоковольтной линии используется канал, созданный для токов высокой частоты по схеме соединения “фаза–земля”.
В составе тракта включается одна фаза действующей ВЛ, которая через конденсаторы связи на подстанциях соединяется с землей для создания замкнутого контура ВЧ токам.
Наиболее часто на линии используют две удаленные фазы “А” и “С” для передачи по одной из них с подстанции команд частоты №1, а по второй – приема на частоте №2.
Устройство и назначение канала ВЧ связи . На каждой подстанции устанавливаются передатчики и приемники высокочастотных сигналов. В данном случае современная аппаратура ВЧ приемопередатчиков выполнена на микропроцессорной базе терминалов ETL640 v.03.32 копании АВВ.
Для обработки сигналов на каждой частоте изготавливается свой приемопередатчик. Поэтому для одной подстанции требуется 2 комплекта терминалов, настроенных на одновременное принятие и передачу сигналов по разным фазам ВЛ.
Подключением ВЧ приемопередатчика к ВЛ занимается специальная аппаратура, отделяющее высокое напряжение от слаботочного оборудования и создающая магистраль для передачи ВЧ сигналов. Ее комплектуют:
Высоковольтным конденсатором связи (КС);
— фильтром присоединения (ФП);
— высокочастотным заградителем (ВЗ);
— ВЧ кабелем.
Назначение высоковольтного конденсатора связи состоит в надежном изолировании от земли транспортируемых по ВЛ мощностей с промышленной частотой и пропускании через себя высокочастотных токов.
На фотоснимке рассматриваемой линии установлено 3 конденсатора с ФП в каждой фазе. Они используются для связи с оборудованием дальнего конца линии в целях:
1. Передачи команд РЗ и ПА;
2. Приема команд РЗ и ПА;
3. Работы ВЧ аппаратуры службы связи.
Для отделения ВЧ сигнала от высоковольтного оборудования подстанции в фазный провод ВЛ высокого напряжения монтируется ВЧ заградитель. который ограничивает величину потерь ВЧ сигналов через параллельные контуры.
Сквозь него хорошо проходят токи промышленной частоты и не пропускаются высокочастотные. ВЗ состоит из реактора (силовой катушки), пропускающего рабочий ток линии, и элементов настройки, параллельно подключенных с реактором.
Для согласования параметров входных сопротивлений ВЧ кабеля и линии используется фильтр присоединения, который выполняется моделью воздушного трансформатора с отпайками от обмоток, позволяющих выполнять необходимые регулировки. ВЧ кабель соединяет фильтр присоединения с приемопередатчиком.
Высокочастотные приёмопередатчики (ETL640), назначение . Приёмопередатчики типа ETL640 (ПРМ/ПРД) предназначены для передачи и приема ВЧ сигналов в виде команд, формируемых релейной защитой (РЗ) и противоаварийной автоматикой (ПА) на противоположный конец ВЛ.
Проверка исправности ВЧ канала . Сложное оборудование тракта ВЧ передачи располагается на расстояниях в сотни километров, требует контроля и поддержания его целостности. Приёмопередатчики ETL640 по концам ВЛ постоянно в обычном режиме эксплуатации обмениваются (осуществляют передачу/приём) сигналами контрольной частоты.
При уменьшении сигнала по величине или изменении его частоты сверх допустимых пределов срабатывает сигнализация неисправности. После восстановления работоспособности приёмопередатчик в автоматическом режиме возвращается к нормальному режиму работы.
Обмен сигналами . Передача и прием сигналов производится на выделенных частотах, к примеру:
Комплекс на фазе “А”: Тх: 470 + 4 кГц, Rx: 474 + 4 кГц;
— комплекс на фазе “С”: Тх: 502 + 4 кГц, Rx: 506 + 4 кГц.
Аппаратура ETL640 предназначена для круглосуточной постоянной работы в условиях отапливаемых ОПУ.
Прием и передача команд . Терминалы №1 и №2 комплексов ETL640 принимают и передают по 16 команд от РЗ и ПА.
Команды приемопередатчиков ETL640 . Типовые команды приемопередатчика любого комплекса ETL640 могут иметь вид:
1. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ без контроля с запретом ТАПВ и пуском от УРОВ или ЗНР комплекса №… REL-670;
2. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ с контролем измерительными органами Z3 ДЗ и 3-й ступени НТЗНП комплекса №… защит REL670 без запрета ТАПВ и пуском от фактора 3-х фазного отключения комплекса №… защит REL;
3. Телеускорение ДЗ с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ, с контролем параметров ступени Z3 ДЗ комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от ступени Z3 ДЗ комплекса №… защит REL-670;
4. Телеускорение НТЗНП с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ с контролем параметров ступени Z3 НТЗНП комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от измерительного органа 3 ступени НТЗНП комплекса №… защит REL670;
5. Фиксация отключения линии со своей стороны ВЛ и действием в схему логики АФОЛ комплекса №… защит РЗА. Пуск от выходного реле схемы логики АФОЛ комплекса №… защит РЗА при отключении линии со своей стороны;
6. III очередь ОН, действующая на пуск:
— 5-й команды АКАП прд 232 кГц ВЛ №…;
— 2-й команды АКПА прд 286 кГц ВЛ №…;
— 4-й команды АНКА прд 342 кГц ВЛ №….
7. Фиксация включения линии со своей стороны и действием в схему логики АФОЛ комплекса №… защит РЗА ВЛ с пуском от выходного реле схемы логики АФОЛ комплекса №… защит РЗА ВЛ-330 при включении со своей стороны;
8. Пуск от 1-й ступени схемы САПАХ … с запуском:
— 6-й команды АНКА прд 348 кГц ВЛ №…;
— 4-й команды АКАП прд 122 кГц ВЛ №….
9. 3-я очередь отключения нагрузки с действием …
Каждая команда формируется для конкретных условий ВЛ с учетом ее конфигурации в электрической сети и эксплуатационных условий. Выходные реле ВЧ аппаратуры и переключающие устройства расположены в отдельном шкафу.
Цепи сигнализации ВЛ . Сигнализация терминалов. На лицевой панели терминалов расположено 3 светодиода, отражающих состояние самого устройства REL670 и 15 светодиодов, указывающих на срабатывания защит, неисправности и состояние оперативных переключателей.
Светодиоды терминалов REL670 (защита 1-го и 2-го комплексов) и REC670 (автоматика и УРОВ 1-го и 2-го комплекса В1 и В2) первых шести номеров имеют красную окраску. Светодиоды с номерами от 7 до 15 имеют желтый цвет.
Светодиоды статусной индикации. Над блоком ЖКД терминалов REС670 и REL670 вставлены 3 светодиодных индикатора “Ready”, “Start” и “Trip”. Для обозначения разной информации они светятся разным цветом. Зеленый цвет индикатора обозначает:
Работу устройств — устойчивым свечением;
— внутреннее повреждение — миганием;
— отсутствие питания оперативного тока — затемнением цвета.
Желтый цвет индикатора обозначает:
Пуск аварийного регистратора — устойчивым свечением;;
— нахождение терминала в тестовом режиме — сопровождается миганием.
Красный цвет индикатора обозначает выдачу команды аварийного отключения (устойчивое свечение).
Таблица светодиодной сигнализации терминала REС670
Сброс и опробование сигнализации . Сброс сигнализации, счетчиков учета приема и передачи ВЧ команд и информации по зонам ДЗ и НТЗНП для терминала производится от нажатия на кнопку SB1 (сброс сигнализации) на передней стороне шкафа.
Для опробования светодиодов терминалов REL670 (REС670) требуется нажать и удерживать дольше 5 секунд кнопку SB1.
Общепанельная световая сигнализация . С лицевой стороны шкафов REС670 находятся лампы:
— HLW – работы АПВ, ЗНФ, УРОВ;
— HLR2 – неисправность комплексов автоматики и УРОВ В-1или В-2.
С лицевой стороны шкафов REL670 находятся лампы:
— HLW – работы защит;
— HLR1 – комплекс защит выведен;
— HLR2 – неисправность комплексов защит.
С лицевой стороне шкафов ETL находятся лампы сигнализации:
— HLW1 – неисправность ETL 1-го комплекса;
— HLW2 – неисправность ETL 2-го комплекса.
Перспективы развития оборудования воздушных ЛЭП . Проверенные временем воздушные выключатели для высоковольтных ЛЭП постепенно вытесняются современными элегазовыми конструкциями, которым не требуется постоянная работа мощных компрессорных станций для поддержания давления воздуха в баках и воздушных магистралях.
Громоздкие аналоговые устройства РЗА и ПА для высоковольтного оборудования, требующие пристального внимания со стороны обслуживающего персонала, заменяются новыми микропроцессорными терминалами.
МОСКВА, 11 мая — РИА Новости. В книге Владимира Богомолова «Момент истины» о Великой Отечественной Войне часто упоминаются «записки по ВЧ» и аппараты ВЧ-связи, по которым верховный главнокомандующий связывался со штабами. Связь была защищенной, и ее невозможно было подслушать без использования специальных средств. Что это был за тип связи?
«ВЧ-связь», «кремлёвка», АТС-1 — система защищенных каналов связи, которая и по сей день обеспечивает стабильность и конфиденциальность переговоров руководителей государства, министерств, стратегических предприятий. Методы защиты многократно усложнились и усовершенствовались, но задача осталась неизменной: беречь разговоры государственного уровня от посторонних ушей.
В годы Великой Отечественной Войны, по словам маршала И.Х.Баграмяна «без ВЧ-связи не начиналось и не проводилось ни одного значительного военного действия. ВЧ-связь сыграла исключительную роль как средство управления войсками и содействовала выполнению боевых операций». Ей обеспечивались не только штабы, но и командование непосредственно на передовых линиях, на дозорных пунктах, плацдармах. Уже на исходе войны наиболее кратко вклад правительственной связи в победу охарактеризовал прославленный маршал К.К. Рокоссовский: «Использование средств правительственной связи в годы войны произвело революцию в управлении войсками».
В основу правительственной связи, появившейся в 1930-е годы, был положен принцип высокочастотного (ВЧ) телефонирования. Он позволяет передавать человеческий голос, «перенесенный» на более высокие частоты, делая его недоступным для прямого прослушивания и давая возможность передавать несколько переговоров по одному проводу.
Первые опыты с внедрением высокочастотной многоканальной телефонной связи проводились с 1921 г. на Московском заводе «Электросвязь» под руководством В.М. Лебедева. В 1923 г. ученый П.В. Шмаков завершил опыты по одновременной передаче двух телефонных переговоров на высоких частотах и одного на низкой частоте по кабельной линии протяженностью 10 км.
Большой вклад в развитие высокочастотной телефонной связи внес ученый, профессор Павел Андреевич Азбукин. Под его руководством в 1925 г. на Ленинградской научно-испытательной станции была разработана и изготовлена первая отечественная аппаратура ВЧ-связи, которую можно было использовать на медных телефонных проводах.
Чтобы понять принцип телефонной ВЧ-связи, вспомним, что обычный человеческий голос производит колебания воздуха в полосе частот 300-3200 Гц, и поэтому для передачи звука по обычному телефонному каналу необходима выделенная полоса в пределах от 0 до 4 кГц, где звуковые колебания будут преобразовываться в электромагнитные. Прослушать телефонный разговор по простой телефонной линии можно, просто подключив телефонный аппарат, телефонную трубку или динамик к проводу. Но можно пустить по проводу более высокую полосу частот, значительно превышающую частоту голоса — от 10 кГц и выше.
© Иллюстрация РИА Новости. Алина Полянина
© Иллюстрация РИА Новости. Алина Полянина
Это будет так называемый несущий сигнал. И тогда колебания, возникающие от человеческого голоса, можно «спрятать» в изменении его характеристик — частоты, амплитуды, фазы. Эти изменения несущего сигнала и будут передавать звук человеческого голоса, образуя огибающий сигнал. Попытки подслушать разговор, подключившись к линии простым телефонным аппаратом, без специального устройства не получится — будет слышен только высокочастотный сигнал.
Первые линии правительственной ВЧ-связи были протянуты от Москвы в Харьков и Ленинград в 1930 году и вскоре технология распространилась по всей стране. К середине 1941 г. сеть правительственной ВЧ-связи включала в себя 116 станций, 20 объектов, 40 трансляционных пунктов и обслуживала около 600 абонентов. Работы инженеров того времени позволили также запустить в 1930 году первую автоматическую станцию Москвы, которая впоследствии проработала 68 лет.
В годы Великой Отечественной войны Москва ни минуты не оставалась без телефонной связи. Работники музея МГТС показали уникальные экспонаты, которые обеспечивали в тяжелые годы бесперебойное сообщение.
В тот период ученые и инженеры решали задачи по усовершенствованию защиты линий связи и одновременно вели разработки сложной шифрующей аппаратуры. Разработанные системы шифрования были очень высокого уровня и по оценкам руководства армией во многом обеспечили успех воинских операций. Маршал Г.К. Жуков отмечал: «Хорошая работа шифровальщиков помогла выиграть не одно сражение». Сходного мнения придерживался и маршал А.М. Василевский: «Ни одно донесение о готовящихся военно-стратегических операциях нашей армии не стало достоянием фашистских разведок».
Канал связи — совокупность устройств и физических сред, передающих сигналы. С помощью каналов сигналы передаются из одного места в другое, а также переносятся во времени (при хранении информации).
Наиболее распространенные устройства, входящие в состав канал: усилители, антенные системы, коммутаторы и фильтры. В качестве физической среды часто используются пара проводов, коаксиальный кабель, волновод, среда, в которой распространяются электромагнитные волны.
С точки зрения техники связи наиболее важными характеристиками каналов связи являются искажения, которым подвергаются передаваемые по нему сигналы. Различают искажения линейные и нелинейные. Линейные искажения состоят из частотных и фазовых искажений и описываются переходной характеристикой или, что эквивалентно, комплексным коэффициентом передачи канала. Нелинейные искажения даются нелинейными зависимостями, указывающими, как изменяется сигнал при прохождении по каналу связи.