Вч связь по лэп аппаратура спи 244. Оборудование вл для обмена командами по вч каналам. Комплексное коммуникационное решение серии FOX состоит из

Разделение вертикально интегрированной структуры постсоветской электроэнергетики, усложнение системы управления, увеличение доли выработки электроэнергии малой генерации, новые правила подключения потребителей (сокращение сроков и стоимости подключения) при этом повышение требований к надежности энергоснабжения влечет за собой приоритетное отношение к развитию систем телекоммуникаций.

В энергетике применяется множество типов связи (порядка 20-ти) различающиеся по:

Среди всего этого многообразия выделяется ВЧ связь по высоковольтным линиям (ВЛ) электропередачи, которая в отличие от остальных видов создавалась специалистами-энергетиками для нужд самой электроэнергетики. Оборудование прочих видов связи, изначально созданное для систем связи общего пользования, в той или иной степени, адаптируется к потребностям энергокомпаний.

Сама идея использования ВЛ для распространения информационных сигналов возникла при проектировании и строительстве первых высоковольтным линий (так как строительство параллельной инфраструктуры для систем связи влекло существенное удорожание), соответственно, уже в начале 20-х годов прошлого века вводятся в работу первые коммерческие системы ВЧ связи.

Первое поколение ВЧ связи было больше похоже на радиосвязь. Присоединение передатчика и приемника высокочастотных сигналов выполнялось с помощью антенны длинною до 100 м, подвешиваемой на опоры параллельно силовому проводу. Сама же ВЛ, являлась направляющей для ВЧ сигнала - в то время, для передачи речи. Антенное присоединение еще долго применялось для организации связи аварийных бригад и на железнодорожном транспорте.

Дальнейшая эволюция ВЧ связи привела к созданию оборудования ВЧ присоединения:

  • конденсаторов связи и фильтров присоединения, что позволило расширить полосу передаваемых и принимаемых частот,
  • ВЧ заградителей (заградительные фильтры), что позволило снизить влияние устройств подстанции и неоднородностей ВЛ на характеристики ВЧ сигнала до приемлемого уровня, и соответственно, улучшить параметры ВЧ тракта.

Следующие поколения каналообразующей аппаратуры стали передавать не только речь, но и сигналы телеуправления, защитные команды релейной защиты, противоаварийной автоматики, позволили организовать передачу данных.

Как отдельный вид ВЧ связь сформировалась в 40-ые, 50-ые годы прошлого столетия. Были разработаны международные стандарты (МЭК), руководящие указания для проектирования, разработки и производства оборудования. В 70-ые годы в СССР силами таких специалистов как Шкарин Ю.П., Скитальцев В.С. были разработан математические методики и рекомендации расчета параметров ВЧ трактов, что существенно упростило работу проектных организаций при проектировании ВЧ каналов и выборе частот, повысило технические характеристики вводимых ВЧ каналов.

До 2014 года ВЧ связь официально была основным видом связи электроэнергетики в Российской Федерации.

Появление и внедрение волоконно-оптических каналов связи, в условиях широкого распространения ВЧ связи, стало взаимодополняющим фактором в современной концепции развития сетей связи электроэнергетики. В настоящее время актуальность ВЧ связи остается на прежнем уровне, а интенсивное развитие и существенные инвестиции именно в оптическую инфраструктуру способствуют развитию и образованию новых сфер применения ВЧ связи.

Неоспоримые преимущества и наличие огромного положительного опыта применения ВЧ связи (почти 100 лет) дают основания полагать, что направление ВЧ будет актуально как в ближайшей так и в отдаленной перспективе, развитие же данного вида связи позволит решать как текущие задачи, так и способствовать развитию всей электроэнергетической отрасли.

Для передачи информации между защитами и автоматикой по концам высоковольтной линии используется канал, созданный для токов высокой частоты по схеме соединения “фаза–земля”.

В составе тракта включается одна фаза действующей ВЛ, которая через конденсаторы связи на подстанциях соединяется с землей для создания замкнутого контура ВЧ токам.

Наиболее часто на линии используют две удаленные фазы “А” и “С” для передачи по одной из них с подстанции команд частоты №1, а по второй – приема на частоте №2.


Устройство и назначение канала ВЧ связи . На каждой подстанции устанавливаются передатчики и приемники высокочастотных сигналов. В данном случае современная аппаратура ВЧ приемопередатчиков выполнена на микропроцессорной базе терминалов ETL640 v.03.32 копании АВВ.

Для обработки сигналов на каждой частоте изготавливается свой приемопередатчик. Поэтому для одной подстанции требуется 2 комплекта терминалов, настроенных на одновременное принятие и передачу сигналов по разным фазам ВЛ.

Подключением ВЧ приемопередатчика к ВЛ занимается специальная аппаратура, отделяющее высокое напряжение от слаботочного оборудования и создающая магистраль для передачи ВЧ сигналов. Ее комплектуют:

Высоковольтным конденсатором связи (КС);
- фильтром присоединения (ФП);
- высокочастотным заградителем (ВЗ);
- ВЧ кабелем.

Назначение высоковольтного конденсатора связи состоит в надежном изолировании от земли транспортируемых по ВЛ мощностей с промышленной частотой и пропускании через себя высокочастотных токов.

На фотоснимке рассматриваемой линии установлено 3 конденсатора с ФП в каждой фазе. Они используются для связи с оборудованием дальнего конца линии в целях:

1. Передачи команд РЗ и ПА;
2. Приема команд РЗ и ПА;
3. Работы ВЧ аппаратуры службы связи.

Для отделения ВЧ сигнала от высоковольтного оборудования подстанции в фазный провод ВЛ высокого напряжения монтируется ВЧ заградитель. который ограничивает величину потерь ВЧ сигналов через параллельные контуры.

Сквозь него хорошо проходят токи промышленной частоты и не пропускаются высокочастотные. ВЗ состоит из реактора (силовой катушки), пропускающего рабочий ток линии, и элементов настройки, параллельно подключенных с реактором.

Для согласования параметров входных сопротивлений ВЧ кабеля и линии используется фильтр присоединения, который выполняется моделью воздушного трансформатора с отпайками от обмоток, позволяющих выполнять необходимые регулировки. ВЧ кабель соединяет фильтр присоединения с приемопередатчиком.


Высокочастотные приёмопередатчики (ETL640), назначение . Приёмопередатчики типа ETL640 (ПРМ/ПРД) предназначены для передачи и приема ВЧ сигналов в виде команд, формируемых релейной защитой (РЗ) и противоаварийной автоматикой (ПА) на противоположный конец ВЛ.


Проверка исправности ВЧ канала . Сложное оборудование тракта ВЧ передачи располагается на расстояниях в сотни километров, требует контроля и поддержания его целостности. Приёмопередатчики ETL640 по концам ВЛ постоянно в обычном режиме эксплуатации обмениваются (осуществляют передачу/приём) сигналами контрольной частоты.

При уменьшении сигнала по величине или изменении его частоты сверх допустимых пределов срабатывает сигнализация неисправности. После восстановления работоспособности приёмопередатчик в автоматическом режиме возвращается к нормальному режиму работы.


Обмен сигналами . Передача и прием сигналов производится на выделенных частотах, к примеру:

Комплекс на фазе “А”: Тх: 470 + 4 кГц, Rx: 474 + 4 кГц;
- комплекс на фазе “С”: Тх: 502 + 4 кГц, Rx: 506 + 4 кГц.

Аппаратура ETL640 предназначена для круглосуточной постоянной работы в условиях отапливаемых ОПУ.


Прием и передача команд . Терминалы №1 и №2 комплексов ETL640 принимают и передают по 16 команд от РЗ и ПА.


Команды приемопередатчиков ETL640 . Типовые команды приемопередатчика любого комплекса ETL640 могут иметь вид:

1. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ без контроля с запретом ТАПВ и пуском от УРОВ или ЗНР комплекса №… REL-670;

2. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ с контролем измерительными органами Z3 ДЗ и 3-й ступени НТЗНП комплекса №… защит REL670 без запрета ТАПВ и пуском от фактора 3-х фазного отключения комплекса №… защит REL;

3. Телеускорение ДЗ с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ, с контролем параметров ступени Z3 ДЗ комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от ступени Z3 ДЗ комплекса №… защит REL-670;

4. Телеускорение НТЗНП с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ с контролем параметров ступени Z3 НТЗНП комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от измерительного органа 3 ступени НТЗНП комплекса №… защит REL670;

5. Фиксация отключения линии со своей стороны ВЛ и действием в схему логики АФОЛ комплекса №… защит РЗА. Пуск от выходного реле схемы логики АФОЛ комплекса №… защит РЗА при отключении линии со своей стороны;

6. III очередь ОН, действующая на пуск:
- 5-й команды АКАП прд 232 кГц ВЛ №…;
- 2-й команды АКПА прд 286 кГц ВЛ №…;
- 4-й команды АНКА прд 342 кГц ВЛ №….

7. Фиксация включения линии со своей стороны и действием в схему логики АФОЛ комплекса №… защит РЗА ВЛ с пуском от выходного реле схемы логики АФОЛ комплекса №… защит РЗА ВЛ-330 при включении со своей стороны;

8. Пуск от 1-й ступени схемы САПАХ … с запуском:
- 6-й команды АНКА прд 348 кГц ВЛ №…;
- 4-й команды АКАП прд 122 кГц ВЛ №….

9. 3-я очередь отключения нагрузки с действием …

Каждая команда формируется для конкретных условий ВЛ с учетом ее конфигурации в электрической сети и эксплуатационных условий. Выходные реле ВЧ аппаратуры и переключающие устройства расположены в отдельном шкафу.


Цепи сигнализации ВЛ . Сигнализация терминалов. На лицевой панели терминалов расположено 3 светодиода, отражающих состояние самого устройства REL670 и 15 светодиодов, указывающих на срабатывания защит, неисправности и состояние оперативных переключателей.

Светодиоды терминалов REL670 (защита 1-го и 2-го комплексов) и REC670 (автоматика и УРОВ 1-го и 2-го комплекса В1 и В2) первых шести номеров имеют красную окраску. Светодиоды с номерами от 7 до 15 имеют желтый цвет.

Светодиоды статусной индикации. Над блоком ЖКД терминалов REС670 и REL670 вставлены 3 светодиодных индикатора “Ready”, “Start” и “Trip”. Для обозначения разной информации они светятся разным цветом. Зеленый цвет индикатора обозначает:

Работу устройств - устойчивым свечением;
- внутреннее повреждение - миганием;
- отсутствие питания оперативного тока - затемнением цвета.

Желтый цвет индикатора обозначает:

Пуск аварийного регистратора - устойчивым свечением;;
- нахождение терминала в тестовом режиме - сопровождается миганием.

Красный цвет индикатора обозначает выдачу команды аварийного отключения (устойчивое свечение).


Таблица светодиодной сигнализации терминала REС670

Сброс и опробование сигнализации . Сброс сигнализации, счетчиков учета приема и передачи ВЧ команд и информации по зонам ДЗ и НТЗНП для терминала производится от нажатия на кнопку SB1 (сброс сигнализации) на передней стороне шкафа.

Для опробования светодиодов терминалов REL670 (REС670) требуется нажать и удерживать дольше 5 секунд кнопку SB1.


Общепанельная световая сигнализация . С лицевой стороны шкафов REС670 находятся лампы:
- HLW – работы АПВ, ЗНФ, УРОВ;
- HLR2 – неисправность комплексов автоматики и УРОВ В-1или В-2.

С лицевой стороны шкафов REL670 находятся лампы:
- HLW – работы защит;
- HLR1 – комплекс защит выведен;
- HLR2 – неисправность комплексов защит.

С лицевой стороне шкафов ETL находятся лампы сигнализации:
- HLW1 – неисправность ETL 1-го комплекса;
- HLW2 – неисправность ETL 2-го комплекса.


Перспективы развития оборудования воздушных ЛЭП . Проверенные временем воздушные выключатели для высоковольтных ЛЭП постепенно вытесняются современными элегазовыми конструкциями, которым не требуется постоянная работа мощных компрессорных станций для поддержания давления воздуха в баках и воздушных магистралях.

Громоздкие аналоговые устройства РЗА и ПА для высоковольтного оборудования, требующие пристального внимания со стороны обслуживающего персонала, заменяются новыми микропроцессорными терминалами.


МОСКВА, 11 мая - РИА Новости. В книге Владимира Богомолова "Момент истины" о Великой Отечественной Войне часто упоминаются "записки по ВЧ" и аппараты ВЧ-связи, по которым верховный главнокомандующий связывался со штабами. Связь была защищенной, и ее невозможно было подслушать без использования специальных средств. Что это был за тип связи?

"ВЧ-связь", "кремлёвка", АТС-1 - система защищенных каналов связи, которая и по сей день обеспечивает стабильность и конфиденциальность переговоров руководителей государства, министерств, стратегических предприятий. Методы защиты многократно усложнились и усовершенствовались, но задача осталась неизменной: беречь разговоры государственного уровня от посторонних ушей.

В годы Великой Отечественной Войны, по словам маршала И.Х.Баграмяна "без ВЧ-связи не начиналось и не проводилось ни одного значительного военного действия. ВЧ-связь сыграла исключительную роль как средство управления войсками и содействовала выполнению боевых операций". Ей обеспечивались не только штабы, но и командование непосредственно на передовых линиях, на дозорных пунктах, плацдармах. Уже на исходе войны наиболее кратко вклад правительственной связи в победу охарактеризовал прославленный маршал К.К. Рокоссовский: "Использование средств правительственной связи в годы войны произвело революцию в управлении войсками".

В основу правительственной связи, появившейся в 1930-е годы, был положен принцип высокочастотного (ВЧ) телефонирования. Он позволяет передавать человеческий голос, "перенесенный" на более высокие частоты, делая его недоступным для прямого прослушивания и давая возможность передавать несколько переговоров по одному проводу.
Первые опыты с внедрением высокочастотной многоканальной телефонной связи проводились с 1921 г. на Московском заводе "Электросвязь" под руководством В.М. Лебедева. В 1923 г. ученый П.В. Шмаков завершил опыты по одновременной передаче двух телефонных переговоров на высоких частотах и одного на низкой частоте по кабельной линии протяженностью 10 км.
Большой вклад в развитие высокочастотной телефонной связи внес ученый, профессор Павел Андреевич Азбукин. Под его руководством в 1925 г. на Ленинградской научно-испытательной станции была разработана и изготовлена первая отечественная аппаратура ВЧ-связи, которую можно было использовать на медных телефонных проводах.

Чтобы понять принцип телефонной ВЧ-связи, вспомним, что обычный человеческий голос производит колебания воздуха в полосе частот 300-3200 Гц, и поэтому для передачи звука по обычному телефонному каналу необходима выделенная полоса в пределах от 0 до 4 кГц, где звуковые колебания будут преобразовываться в электромагнитные. Прослушать телефонный разговор по простой телефонной линии можно, просто подключив телефонный аппарат, телефонную трубку или динамик к проводу. Но можно пустить по проводу более высокую полосу частот, значительно превышающую частоту голоса - от 10 кГц и выше.

© Иллюстрация РИА Новости. Алина Полянина

© Иллюстрация РИА Новости. Алина Полянина

Это будет так называемый несущий сигнал. И тогда колебания, возникающие от человеческого голоса, можно "спрятать" в изменении его характеристик — частоты, амплитуды, фазы. Эти изменения несущего сигнала и будут передавать звук человеческого голоса, образуя огибающий сигнал. Попытки подслушать разговор, подключившись к линии простым телефонным аппаратом, без специального устройства не получится - будет слышен только высокочастотный сигнал.
Первые линии правительственной ВЧ-связи были протянуты от Москвы в Харьков и Ленинград в 1930 году и вскоре технология распространилась по всей стране. К середине 1941 г. сеть правительственной ВЧ-связи включала в себя 116 станций, 20 объектов, 40 трансляционных пунктов и обслуживала около 600 абонентов. Работы инженеров того времени позволили также запустить в 1930 году первую автоматическую станцию Москвы, которая впоследствии проработала 68 лет.

В годы Великой Отечественной войны Москва ни минуты не оставалась без телефонной связи. Работники музея МГТС показали уникальные экспонаты, которые обеспечивали в тяжелые годы бесперебойное сообщение.

В тот период ученые и инженеры решали задачи по усовершенствованию защиты линий связи и одновременно вели разработки сложной шифрующей аппаратуры. Разработанные системы шифрования были очень высокого уровня и по оценкам руководства армией во многом обеспечили успех воинских операций. Маршал Г.К. Жуков отмечал: "Хорошая работа шифровальщиков помогла выиграть не одно сражение". Сходного мнения придерживался и маршал А.М. Василевский: "Ни одно донесение о готовящихся военно-стратегических операциях нашей армии не стало достоянием фашистских разведок".

Канал связи - совокупность устройств и физических сред, передающих сигналы. С помощью каналов сигналы передаются из одного места в другое, а также переносятся во времени (при хранении информации).

Наиболее распространенные устройства, входящие в состав канал: усилители, антенные системы, коммутаторы и фильтры. В качестве физической среды часто используются пара проводов, коаксиальный кабель, волновод, среда, в которой распространяются электромагнитные волны.

С точки зрения техники связи наиболее важными характеристиками каналов связи являются искажения, которым подвергаются передаваемые по нему сигналы. Различают искажения линейные и нелинейные. Линейные искажения состоят из частотных и фазовых искажений и описываются переходной характеристикой или, что эквивалентно, комплексным коэффициентом передачи канала. Нелинейные искажения даются нелинейными зависимостями, указывающими, как изменяется сигнал при прохождении по каналу связи.

Канал связи характеризуется совокупностью сигналов, которые посылаются на передающем конце, и сигналами, которые принимаются на приемном конце. В случае, когда сигналы на входе и выходе канала являются функциями, определенными на дискретном множестве значений аргумента, канал называется дискретным. Такими каналами связи пользуются, например, при импульсных режимах работы передатчиков, в телеграфии, телеметрии, радиолокации.

Несколько различных каналов могут использовать одну и ту же техническую линию связи. В этих случаях (например, в многоканальных линиях связи с частотным или временным разделением сигналов) каналы объединяются и разъединяются с помощью специальных коммутаторов или фильтров. Иногда, наоборот, один канал использует нескольких технических линий связи.

Высокочастотная связь (ВЧ-связь) - это вид связи в электрических сетях, который предусматривает использование высоковольтных линий электропередач в качестве каналов связи. По проводам линии электропередач электросетей протекает переменный ток частотой 50 Гц. Суть организации ВЧ-связи заключается в том, что те же провода используются в качестве передачи сигнала по линии, но на другой частоте.

Диапазон частоты ВЧ-каналов связи – от десятков до сотен кГц. Высокочастотная связь организуется между двумя смежными подстанциями, которые соединены линией электропередач напряжением 35кВ и выше. Для того чтобы попадал на шины распределительного устройства подстанции, а сигналы связи на соответствующие комплекты связи, используют высокочастотные заградители и конденсаторы связи.

ВЧ-заградитель имеет небольшое сопротивление на токе промышленной частоты и большое сопротивление на частоте каналов высокочастотной связи. Конденсатор связи - наоборот: имеет большое сопротивление при частоте 50 Гц, а на частоте канала связи – малое сопротивление. Таким образом, обеспечивается попадание на шины подстанции исключительно тока частотой 50 Гц, на комплект ВЧ-связи – только сигналов на большой частоте.

Для приема и обработки сигналов ВЧ-связи на обеих подстанциях, между которыми организована ВЧ-связь, устанавливают специальные фильтры, приемопередатчики сигналов и комплекты оборудования, которые осуществляют определенные функции. Ниже рассмотрим, какие именно функции могут реализовываться с применением ВЧ-связи.


Наиболее важная функция – использование ВЧ-канала в устройствах релейной защиты и автоматики оборудования подстанции. ВЧ-канал связи используется в защитах линий 110 и 220кВ – диференциально-фазной защиты и направленно-высокочастотной защиты. По обоим концам ЛЭП устанавливают комплекты защит, которые имеют связь между собой по ВЧ-каналу связи. Благодаря надежности, быстродействию и селективности, защиты с использованием ВЧ-канала связи используются в качестве основных для каждой ВЛ 110-220кВ.

Канал для передачи сигналов релейной защиты линий электропередач (ЛЭП) называется канал релейной защиты . В технике РЗА получили наибольшее распространения три типа ВЧ защит:

    фильтровая направленная,

    дистанционная с ВЧ блокировкой,

    дифференциально-фазовая.

В первых двух типах защит по ВЧ каналу при внешнем коротком замыкании передается сплошной сигнал ВЧ блокировки, в дифференциально-фазовой защите по каналу релейной защиты передаются импульсы напряжения ВЧ. Длительность импульсов и пауз примерно одинакова и равна половине периода промышленной частоты. При внешнем коротком замыкании передатчики, расположенные по обоим концам линии, работают в разные полупериоды промышленной частоты. Каждый из приемников принимает сигналы обоих передатчиков. Вследствие этого при внешнем коротком замыкании оба приемника принимают сплошной блокирующий сигнал.

При коротком замыкании на защищаемой линии происходит сдвиг фаз манипулирующих напряжений и появляются интервалы времени, когда оба передатчика остановлены. При этом в приемнике возникает прерывистый ток, используемый для создания сигнала, действующего на отключение выключателя данного конца защищаемой линии.

Обычно передатчики на обоих концах линии работают на одной частоте. Однако на линиях большой протяженности иногда выполняются каналы релейной защиты с передатчиками, работающими на разных ВЧ или па частотах с малым интервалом (1500-1700 гц). Работа на двух частотах дает возможность избавиться от вредного влияния сигналов, отраженных от противоположного конца линии. Каналы релейной защиты используют специальный (выделенный) ВЧ канал.

Существуют также устройства, которые с использованием ВЧ-канала связи, определяют место повреждения линий электропередач. Кроме того, ВЧ-канал связи может использоваться для передачи сигналов , SCADA, САУ и других систем оборудования АСУ ТП. Таким образом, по каналу высокочастотной связи можно осуществлять контроль над режимом работы оборудования подстанций, а также передавать команды управления выключателями и различными функциями .

Еще одна функция – функция телефонной связи . ВЧ-канал можно использовать для оперативных переговоров между смежными подстанциями. В современных условиях данная функция не актуальна, так как существуют более удобные способы связи между обслуживающим персоналом объектов, но ВЧ-канал может служить резервным каналом связи в случае возникновения чрезвычайной ситуации, когда будет отсутствовать мобильная или проводная телефонная связь.

Канал связи по линиям электропередачи - канал, используемый для передачи сигналов в диапазоне от 300 до 500 кгц. Используются различные схемы включения аппаратуры канала связи. Наряду со схемой фаза - земля (рис. 1), встречающейся наиболее часто благодаря своей экономичности, применяются схемы: фаза - фаза, фаза - две фазы, две фазы - земля, три фазы - земля, фаза - фаза разных линий. ВЧ заградитель, конденсатор связи и фильтр присоединения, используемые в этих схемах, являются оборудованием обработки ЛЭП для организации по их проводам ВЧ каналов связи.


Рис. 1. Структурная схема простого канала связи по линии электропередачи между двумя смежными подстанциями: 1 - ВЧ заградитель; 2 - конденсатор связи; 3 - фильтр присоединения; 4 - ВЧ кабель; 5 - устройство ТУ - ТС; в - датчики телеизмерений; 7 -приемники телеизмерений; 8 - устройства релейной зашиты или (и) телеавтоматики; 9 - АТС; 10 - абонент АТС; 11 - прямые абоненты.

Обработка линий нужна для получения стабильного канала связи. Затухание ВЧ канала по обработанным ЛЭП почти не зависит от схемы коммутации линий. В случае отсутствия обработки связь будет прерываться при отключении или заземлении концов ЛЭП. Одной из важнейших проблем связи по линиям электропередачи является нехватка частот, обусловленная малым переходным затуханием между линиями, имеющими соединение через шины подстанций .

ВЧ-каналы могут использовать для связи с оперативно-выездными бригадами, которые осуществляют ремонт участков поврежденных линий электропередач, ликвидируют повреждения в электроустановках. Для этой цели используют специальные переносные приемопередатчики.

Применяется следующая ВЧ аппаратура, подключаемая к обработанной ЛЭП:

    комбинированная аппаратура для каналов телемеханики, автоматики, релейной защиты и телефонной связи;

    специализированная аппаратура для какой-либо одной из перечисленных функций;

    аппаратура дальней связи, подключаемая к ЛЭП через устройство присоединения непосредственно или с помощью дополнительных блоков для сдвига частот и повышения уровня передачи;

    аппаратура импульсного контроля линий.

Третий

Второй

Первый

Схема защиты трансформатора , в которой имеется дифференциальная и газовая защиты (ДЗ), реагирующие на отключение трансформатора с двух сторон и максимальная токовая защита (СЗ), которая должна производить отключение только с одной стороны.

При составлении принципиальной схемы релейной защиты в свернутом виде может быть не обнаружена электрическая связь цепей отключения двух выключателей. Из развернутой схемы (Схема 1)следует, что при такой связи (поперечная цепь) неизбежна ложная цепь. Необходимы два оперативных контакта у защитных реле (Схема 2), действующие на два выключателя или разделительное промежуточное реле (Схема 3).

Рис. – Схема защиты трансформатора: 1 – неправильная; 2,3 – правильные

Неразделенные цепи высшего и низшего напряжения трансформатора.

Из рисунка (1) видна невозможность независимого отключения одной из сторон трансформатора без отключения другой.

Указанная ситуация исправляется включением промежуточного реле КL.

Рис. – Схемы защиты трансформатора: 1 – неправильная; 2 – правильная

Защиты генератора и трансформатора блока на электростанции действуют, как и требуется, на отключение выключателя и автомата гашения поля через разделительные промежуточные реле КL1 и КL2, но реле присоединены к разным секциям шинок питания, т.е. через разные предохранители.

Ложная цепь, показанная стрелками, образовалась через лампу контроля HL предохранителей в результате перегорания предохранителя FU2.

Рис. – Образование ложной цепи при перегорании предохранителя

1, 2, 3 – оперативные контакты реле

Схемы с питанием цепей вторичных соединений оперативным постоянным и переменным током

При хорошо изолированных от земли полюсах источника питания замыкание на землю в одной какой-либо точке цепи вторичных соединений обычно не влечет за собой вредных последствий. Однако второе замыкание на землю может вызвать ложное включение или отключение, неправильную сигнализацию и др. Профилактическими мерами в этом случае могут быть:

а) сигнализация о первом замыкании на землю в одном из полюсов; б) двухполюсное (двухстороннее) отделение элементов цепей управления – практически не применяется из-за сложности.

При изолированных полюсах (Рис.) заземление в точке а при разомкнутых замыкающих контактах 1 еще не вызовет ложного действия катушки командного органа К, но как только появится второе повреждение изоляции на землю в разветвленной сети положительного полюса, неминуема ложная работа аппарата, так как контакт 1 оказывается зашунтированным. Вот почему необходима сигнализация о замыкании на землю в оперативных цепях, и прежде всего на полюсах источника питания.



Рис. – Ложное срабатывание аппарата при втором замыкании на землю

Однако в сложных цепях с большим числом последовательно включенных оперативных контактов такая сигнализация может и не выявить возникшего замыкания на землю (Рис.).

Рис. – Неэффективность контроля изоляции в сложных цепях

При появлении заземления между контактами в точке а сигнализация невозможна.

В практике эксплуатации автоматических установок со слаботочной аппаратурой (до 60 В) прибегают иногда к намеренному заземлению одного из полюсов, например положительного (он более запыляется и подвержен электролитическим явлениям, т.е. и без того имеет ослабленную изоляцию). Это облегчает обнаружение и ликвидацию аварийного очага. В таком случае рекомендуется подсоединять катушку цепей управления одним концом к тому полюсу, который заземлен.

Все сказанное о питании цепей на постоянном оперативном токе, может быть отнесено и к оперативному переменному току с питанием цепей линейным напряжением. При этом следует учесть вероятность ложной работы (из-за емкостных токов) и резонансных явлений. Поскольку предусмотреть условия надежной работы в этом случае затруднительно, то иногда применяются вспомогательные изолирующие промежуточные трансформаторы с заземлением одного из зажимов на вторичной стороне.

Как видно из схемы, в этом случае при повреждении изоляции на землю в точке 2 перегорает предохранитель FU1 и замыкание на землю в точке 1 не вызывает ложного включения контактора К.

Схема включения конденсаторов с разделительными диодами

Высокочастотная (ВЧ) связь по линиям высокого напряжения получила значительное распространение во всех странах. В Украине этот вид связи широко используется в энергосистемах для передачи информации различного характера. Высокочастотные каналы используются для передачи сигналов релейной защиты линий, телеотключения выключателей, телесигнализации, телеуправления, телерегулирования и телеизмерения, для диспетчерской и административно-хозяйственной телефонной связи, а также для передачи данных.

Каналы связи по линиям электропередачи дешевле и надежнее каналов по специальным проводным линиям, так как не расходуются средства на сооружение и эксплуатацию собственно линии связи, а надежность линии электропередачи значительно выше надежности обычных проводных линий. Осуществление высокочастотной связи по линиям электропередачи связано с особенностями, не встречающимися в проводной связи.

Для подключения аппаратуры связи к проводам линий электропередачи необходимы специальные устройства обработки и присоединения, позволяющие отделить высокое напряжение от слаботочной аппаратуры и осуществить тракт для передачи ВЧ сигналов (рис. 1).

Рис. – Присоединение высокочастотной аппаратуры связи к линиям высокого напряжения

Одним из основных элементов схемы присоединения аппаратуры связи к линиям электропередачи является конденсатор связи высокого напряжения. Конденсатор связи, включаемый на полное напряжение сети, должен обладать достаточной электрической прочностью. Для лучшего согласования входного сопротивления линии и устройства присоединения емкость конденсатора должна быть достаточно большой. Выпускаемые сейчас конденсаторы связи дают возможность иметь емкость присоединения на линиях любого класса по напряжению не меньше 3000 пФ, что позволяет получить устройства присоединения с удовлетворительными параметрами. Конденсатор связи подключают к фильтру присоединения, который заземляет нижнюю обкладку этого конденсатора для токов промышленной частоты. Для токов высокой частоты фильтр присоединения совместно с конденсатором связи согласует сопротивление высокочастотного кабеля с входным сопротивлением линии электропередачи и образует фильтр для передачи токов высокой частоты от ВЧ кабеля в линию с малыми потерями. В большинстве случаев фильтр присоединения с конденсатором связи образуют схему полосового фильтра, пропускающего определенную полосу частот.

Ток высокой частоты, проходя через конденсатор связи по первичной обмотке фильтра присоединения на землю, .наводит во вторичной обмотке L2 напряжение, которое через конденсатор С1 и соединительную линию попадает на вход аппаратуры связи. Ток промышленной частоты, проходящий через конденсатор связи, мал (от десятков до сотен миллиампер), и падение напряжения на обмотке фильтра присоединения не превышает нескольких вольт. При обрыве или плохом контакте в цепи фильтра присоединения он может оказаться под полным напряжением линии, и поэтому в целях безопасности все работы на фильтре производят при заземлении нижней обкладки конденсатора специальным заземляющим ножом.

Согласованием входного сопротивления ВЧ аппаратуры связи и линии достигают минимальных потерь энергии ВЧ сигнала. Согласование с воздушной линией (ВЛ), имеющей сопротивление 300–450 Ом, не всегда удается выполнить полностью, так как при ограниченной емкости конденсатора связи фильтр с характеристическим сопротивлением со стороны линии, равным характеристическому сопротивлению ВЛ, может иметь узкую полосу пропускания. Для получения.нужной полосы пропускания в ряде случаев приходится допускать повышенное (до 2 раз) характеристическое сопротивление фильтра со стороны линии, мирясь с несколько большими потерями вследствие отражения. Фильтр присоединения, устанавливаемый у конденсатора связи, соединяют с аппаратурой высокочастотным кабелем. К одному кабелю может быть подключено несколько высокочастотных аппаратов. Для ослабления взаимных влияний между ними применяют разделительные фильтры.

Каналы системной автоматики – релейной защиты и телеотключения, которые должны быть особо надежны, требуют обязательного применения разделительных фильтров для отделения других каналов связи, работающих через общее устройство присоединения.

Для отделения ВЧ тракта передачи сигнала от оборудования высокого напряжения подстанции, которое может иметь низкое сопротивление для высоких частот канала связи, в фазный провод линии высокого напряжения включается высокочастотный заградитель. Высокочастотный заградитель состоит из силовой катушки (реактора), по которой проходит рабочий ток линии, и элемента настройки, присоединяемого параллельно катушке. Силовая катушка заградителя с элементом настройки образуют двухполюсник, который имеет достаточно высокое сопротивление на рабочих частотах. Для тока промышленной частоты 50 Гц заградитель имеет очень малое сопротивление. Находят применение заградители, рассчитанные на запирание одной или двух узких полос (одно- и двухчастотные заградители) и одной широкой полосы частот в десятки и сотни килогерц (широкополосные заградители). Последние получили наибольшее распространение, несмотря на меньшее сопротивление в полосе заграждения по сравнению с одно- и двухчастотными. Эти заградители дают возможность запирать частоты нескольких каналов связи, подключенные к одному и тому же проводу линии. Высокое сопротивление заградителя в широкой полосе частот можно обеспечить тем легче, чем больше индуктивность реактора. Получить реактор с индуктивностью в несколько миллигенри сложно, так как это приводит к значительному увеличению размеров, массы и стоимости заградителя. Если ограничить активное сопротивление в по­лосе запираемых частот до 500–800 Ом, что достаточно для большинства каналов, то индуктивность силовой катушки может быть не более 2 мГ.

Заградители выпускаются с индуктивностью от 0,25 до 1,2 мГ на рабочие токи от 100 до 2000 А. Рабочий ток заградителя тем выше, чем выше напряжение линии. Для распределительных сетей выпускают заградители на 100–300 А, а для линий 330 кВ и выше наибольший рабочий ток заградителя 2000 А.

Различные схемы настройки и необходимый диапазон запираемых частот получают, используя конденсаторы, дополнительные катушки индуктивности и резисторы, имеющиеся в элементе настройки заградителя.

Присоединение к линии можно осуществить различными способами. При несимметричной схеме ВЧ аппаратуру включают между проводом (или несколькими проводами) и землей по схемам «фаза – земля» или «две фазы – земля». При симметричных схемах ВЧ аппаратуру подключают между двумя или несколькими проводами линий («фаза – фаза», «фаза – две фазы»). На практике применяют схему «фаза – фаза». При включении аппаратуры между проводами разных линий используют лишь схему «фаза – фаза разных линий».

Для организации ВЧ каналов по линиям высокого напряжения применяют диапазон частот 18–600 кГц. В распределительных сетях используют частоты, начиная от 18 кГц, на магистральных линиях 40–600 кГц. Для получения удовлетворительных параметров ВЧ тракта на низких частотах необходимы большие значения индуктивностей силовых катушек заградителей и емкостей конденсаторов связи. Поэтому нижняя граница по частоте ограничена параметрами устройств обработки и присоединения. Верхняя граница частотного диапазона определяется допустимым значением линейного затухания, которое растет с увеличением частоты.

1. ВЫСОКОЧАСТОТНЫЕ ЗАГРАДИТЕЛИ

Схемы настройки заградителей . Высокочастотные заградители обладают высоким сопротивлением для токов рабочей частоты канала и служат для отделения шунтирующих ВЧ тракт элементов (подстанций и ответвлений), которые при отсутствии заградителей могут привести к увеличению затухания тракта.

Высокочастотные свойства заградителя характеризуются полосой заграждения, т. е. полосой частот, в которой сопротивление заградителя не меньше некоторого допустимого значения (обычно 500 Ом). Как правило, полоса заграждения определяется по допустимому значению активной составляющей сопротивления заградителя, но иногда по допустимому значению полного сопротивления.

Заградители отличаются по значениям индуктивностей, допустимым токам силовых катушек и по схемам настройки. Применяются одно- и двухчастотные резонансные или притуплённые схемы настройки и широкополосные схемы (по схеме полного звена и полузвена полосового фильтра, а также по схеме полузвена фильтра верхних частот). Заградители с одно- и двух-частотными схемами настройки часто не дают возможности заградить нужную полосу частот. В этих случаях применяют заградители с широкополосными схемами настройки. Такие схемы настройки применяют при организации каналов защиты и связи, имеющих общую аппаратуру присоединения.

При протекании тока через катушку заградителя возникают электродинамические усилия, действующие вдоль оси катушки, и радиальные, стремящиеся разорвать виток. Осевые усилия неравномерны по длине катушки. Большие усилия возникают на краях катушки. Поэтому шаг витков на краю делают больше.

Электродинамическая стойкость заградителя определяется максимальным током КЗ, который он выдерживает. В заградителе КЗ-500 при токе 35 кА возникают осевые усилия в 7 тонн (70 кН).

Защита элементов настройки от перенапряжений . Волна перенапряжения, возникающая на воздушной линии, попадает на заградитель. Напряжение волны распределяется между конденсаторами элемента настройки и входным сопротивлением шин подстанции. Силовая катушка представляет собой большое сопротивление для волны с крутым фронтом и при рассмотрении процессов, связанных с перенапряжениями, ее можно не учитывать. Для защиты конденсаторов настройки и силовой катушки параллельно силовой катушке подсоединяют разрядник, ограничивающий напряжение на элементах заградителя до безопасного для них значения. Пробивное напряжение разрядника по условиям деионизации искрового промежутка должно быть в 2 раза больше сопровождающего напряжения, т. е. падения напряжения на силовой катушке от максимального тока кз U сопр =I к.з. ωL.

При большом предразрядном времени пробивное напряжение конденсаторов значительно больше пробивного напряжения разрядников; при малом (менее 0,1 мкс) пробивное напряжение конденсаторов становится меньше пробивного напряжения разрядника. Поэтому необходимо задерживать рост напряжения на конденсаторах до момента срабатывания разрядника, что достигают включением добавочной катушки индуктивности L д последовательно с конденсатором (рис. 15). После пробоя разрядника напряжение на конденсаторе поднимается медленно и дополнительный разрядник, включенный параллельно конденсатору, хорошо его защищает.

Рис. – Схемы высокочастотных заградителей с устройством защиты от перенапряжений: а) одночастотная; б) двухчастотная

2. КОНДЕНСАТОРЫ СВЯЗИ

Общие сведения . Конденсаторы связи служат для подключения ВЧ аппаратуры связи, телемеханики и защиты к линиям высокого напряжения, а также для отбора мощности и измерения напряжения.

Сопротивление конденсатора обратно пропорционально частоте напряжения, прикладываемого к нему, и емкости конденсатора. Реактивное сопротивление конденсатора связи для токов промышленной частоты, следовательно, значительно больше, чем для частоты 50 – 600 кГц каналов связи телемеханики и защиты (в 1000 раз и более), что позволяет с помощью этих конденсаторов разделить токи высокой и промышленной частоты и предотвратить попадание высокого напряжения на электроустановки. Токи промышленной частоты отводятся на землю через конденсаторы связи, минуя аппаратуру ВЧ. Конденсаторы связи рассчитаны на фазное (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью).

Для отбора мощности применяют специальные конденсаторы отбора, включаемые последовательно с конденсатором связи.

В названиях элементов конденсаторов буквы обозначают последовательно характер применения, вид заполнителя, исполнение; цифры – номинальное фазное напряжение и емкость. СМР – связи, маслонаполненный, с расширителем; СММ – связи, маслонаполненный, в металлическом кожухе. Для различных напряжений конденсаторы связи комплектуют из отдельных элементов, соединенных последовательно. Элементы конденсаторов СМР-55/√3-0,0044 рассчитаны на нормальную работу при напряжении 1,1 U иом, элементы СМР-133/√3-0,0186 – на 1,2U иом. Емкость конденсаторов для классов изоляции 110, 154, 220, 440 и 500 кВ принимается с допуском от -5 до +10%.

3. ФИЛЬТРЫ ПРИСОЕДИНЕНИЯ

Общие сведения и расчетные зависимости. Высокочастотную аппаратуру подключают к конденсатору не непосредственно через кабель, а через фильтр присоединения, который компенсирует реактивное сопротивление конденсатора, согласовывает волновые сопротивления линии и ВЧ кабеля, заземляет нижнюю обкладку конденсатора, чем образуется путь для токов промышленной частоты и обеспечивается безопасность работ.

При обрыве цепи линейной обмотки фильтра на нижней обкладке конденсатора появляется фазное напряжение по отношению к земле. Поэтому все переключения в цепи линейной обмотки фильтра присоединения производят при включенном заземляющем ноже.

Фильтр ОФП-4 (рис. ,) предназначен для работы на линиях 35, 110 и 220 кВ по схеме «фаза – земля» с конденсатором связи 1100 и 2200 пФ и с кабелем, имеющим волновое сопротивление 100 Ом. Фильтр имеет три частотных диапазона. Для каждого диапазона имеется отдельный воздушный трансформатор, залитый изоляционной массой.

Рис. – Принципиальная схема фильтра-присоединения ОФП-4

6. ОБРАБОТКА ГРОЗОЗАЩИТНЫХ ТРОСОВ, АНТЕННЫ

Грозозащитные тросы линий высокого напряжения могут быть также использованы в качестве каналов передачи информации. Тросы изолированы от опор с целью экономии электроэнергии, при атмосферных перенапряжениях они заземляются через пробиваемые искровые промежутки. Стальные тросы имеют высокое затухание для сигналов высокой частоты и позволяют передавать информацию лишь на коротких линиях на частотах не более 100 кГц. Биметаллические тросы (стальные тросы с алюминиевым покрытием), тросы алюмовелд (из скрученных сталеалюминевых проволок), одноповивные тросы (один повив – алюминиевые проволоки, остальные повивы – стальные) дают возможность организовать каналы связи с малыми затуханиями и уровнями помех. Помехи меньше, чем в каналах связи по фазным проводам, а аппаратура ВЧ обработки и присоединения проще и дешевле, так как токи, текущие по тросам, и напряжения на них невелики. Биметаллические провода дороже стальных, поэтому их применение может быть оправдано, если ВЧ каналы по фазным проводам не могут быть выполнены. Это может быть на сверхдальних, а иногда на дальних электропередачах.

Каналы по тросам можно включать по схемам «трос – трос», «трос – земля» и «два троса – земля». На ВЛ переменного тока тросы меняют местами через каждые 30 – 50 км для уменьшения в них наводок токов промышленной частоты, что вносит дополнительное затухание в 0,15 Нп на каждое скрещивание в схемах «трос – трос», не влияя на схему «два троса – земля». На передачах постоянного тока можно применять схему «трос – трос», так как здесь скрещивания не нужно.

Связь по грозозащитным тросам не прерывается при заземлении фазных проводов, не зависит от схемы коммутации линий.

Антенная связь применяется для присоединена к ВЛ передвижной ВЧ аппаратуры. Провод подвешивают вдоль проводов ВЛ или используют участок грозозащитного троса. Такой экономичный способ присоединения не нуждается в заградителях и конденсаторах связи.