Фильтр баттерворта на оу расчет. Что такое фильтр баттерворта, расчет и схема. Нормированные полиномы Баттерворта

В данной статье мы поговорим про фильтр Баттерворта, рассмотрим порядки фильтров, декады и октавы, подробно разберем фильтр низких частот Баттерворта третьего порядка с расчетом и схемой.

Введение

В устройствах, которые используют фильтры для формирования частотного спектра сигнала, например, в системах связи или управления, форма или ширина спада, также называемая «полосой перехода», для простого фильтра первого порядка может быть слишком длинной или необходимы широкие и активные фильтры, разработанные с более чем одним «заказом». Эти типы фильтров обычно известны как фильтры «высокого порядка» или «n- го порядка».

Порядок фильтров

Сложность или тип фильтра определяется «порядком» фильтров и зависит от количества реактивных компонентов, таких как конденсаторы или катушки индуктивности в его конструкции. Мы также знаем, что скорость спада и, следовательно, ширина полосы перехода зависит от порядкового номера фильтра и что для простого фильтра первого порядка он имеет стандартную скорость спада 20 дБ / декаду или 6 дБ / октава.

Тогда для фильтра, имеющего n- й порядковый номер, он будет иметь последующую скорость спада 20n дБ / декаду или 6n дБ / октаву. Таким образом:

  • фильтр первого порядка имеет скорость спада 20 дБ / декаду (6 дБ / октава)
  • фильтр второго порядка имеет скорость спада 40 дБ / декаду (12 дБ / октава)
  • фильтр четвертого порядка имеет частоту спада 80 дБ / декада (24 дБ / октава) и т. д.

Фильтры высокого порядка, такие как третий, четвертый и пятый, обычно формируются путем каскадного объединения одиночных фильтров первого и второго порядка.

Например, два фильтра нижних частот второго порядка могут быть соединены каскадно для получения фильтра нижних частот четвертого порядка и так далее. Несмотря на то, что порядок фильтра, который может быть сформирован, не ограничен, при увеличении порядка увеличиваются его размер и стоимость, а также снижается его точность.

Декады и октавы

Последний комментарий о Декадах и Октавах . По шкале частот декада — это десятикратное увеличение (умножение на 10) или десятикратное уменьшение (деление на 10). Например, от 2 до 20 Гц представляют одну декаду, тогда как от 50 до 5000 Гц представляют две декады (от 50 до 500 Гц, а затем от 500 до 5000 Гц).

Октава — это удвоение (умножить на 2) или уменьшение в два раза (деление на 2) по шкале частот. Например, от 10 до 20 Гц представляет одну октаву, а от 2 до 16 Гц — это три октавы (от 2 до 4, от 4 до 8 и, наконец, от 8 до 16 Гц), каждый раз удваивая частоту. В любом случае, логарифмические шкалы широко используются в частотной области для обозначения значения частоты при работе с усилителями и фильтрами, поэтому важно понимать их.

Поскольку резисторы, определяющие частоту, все равны, как и конденсаторы, определяющие частоту, отсечка или угловая частота (ƒ C) для первого, второго, третьего или даже для фильтра четвертого порядка также должны быть равны и найдены, используя знакомое уравнение:

Как и в случае фильтров первого и второго порядка, фильтры верхних частот третьего и четвертого порядка формируются простым взаимным обменом положений определяющих частоту компонентов (резисторов и конденсаторов) в эквивалентном фильтре нижних частот. Фильтры высокого порядка можно спроектировать, следуя процедурам, которые мы видели ранее в руководствах по фильтру нижних частот и фильтрам верхних частот. Однако общий коэффициент усиления фильтров высокого порядка является фиксированным, поскольку все компоненты, определяющие частоту, являются одинаковыми.

Аппроксимации фильтра

До сих пор мы рассматривали низкочастотные и высокочастотные схемы фильтра первого порядка, их результирующие частотные и фазовые характеристики. Идеальный фильтр дал бы нам спецификации максимального усиления полосы пропускания и плоскостности, минимального затухания полосы пропускания, а также очень крутой полосы пропускания, чтобы остановить спад полосы (полоса перехода), и поэтому очевидно, что большое количество сетевых откликов будет удовлетворять эти требования.

Неудивительно, что в линейном дизайне аналоговых фильтров есть ряд «аппроксимационных функций», в которых используется математический подход для наилучшего приближения передаточной функции, которая требуется нам для проектирования фильтров.

Такие конструкции известны как Эллиптический , Баттерворт , Чебышев , Бессель , Кауэр и многие другие. Из этих пяти «классических» функций аппроксимации линейного аналогового фильтра только фильтр Баттерворта и особенно конструкция фильтра Баттерворта нижних частот будут рассматриваться здесь как его наиболее часто используемая функция.

Низкочастотный фильтр Баттерворта

Частотная характеристика аппроксимационной функции фильтра Баттерворта также часто называется «максимально плоской» (без пульсаций) характеристикой, поскольку полоса пропускания спроектирована так, чтобы иметь частотную характеристику, которая является настолько плоской, насколько это математически возможно, от 0 Гц (DC) до частоты среза -3 дБ без пульсаций. Более высокие частоты за пределами точки отсечки снижаются до нуля в полосе останова на уровне 20 дБ / декада или 6 дБ / октава. Это потому, что он имеет «фактор качества», «Q» всего 0,707.

Однако одним из основных недостатков фильтра Баттерворта является то, что он достигает этой плоскостности полосы пропускания за счет широкой полосы перехода, когда фильтр изменяется от полосы пропускания к полосе остановки. Он также имеет плохие фазовые характеристики. Идеальная частотная характеристика, называемая фильтром «кирпичной стены», и стандартные аппроксимации Баттерворта для различных порядков фильтра приведены ниже.

Обратите внимание, что чем выше порядок фильтра Баттерворта, тем больше количество каскадных ступеней в конструкции фильтра и тем ближе фильтр подходит к идеальному отклику «кирпичной стены».

Однако на практике идеальная частотная характеристика Баттерворта недостижима, поскольку она вызывает чрезмерную пульсацию в полосе пропускания.

Где обобщенное уравнение, представляющее фильтр Баттерворта «n-го» порядка, частотная характеристика дается как:

Где: n представляет порядок фильтра, ω равно 2πƒ, а ε — максимальное усиление полосы пропускания (A max).

Если A max определено на частоте, равной угловой точке отсечки -3 дБ (ƒc), тогда ε будет равно единице и, следовательно, ε 2 также будет равно единице. Однако, если вы теперь хотите определить A max при другом значении усиления по напряжению, например, 1 дБ или 1.1220 (1 дБ = 20 * logA max), тогда новое значение ε находится по формуле:

Подставляя данные в уравнения, получаем:

Частотная характеристика фильтра может быть определена математически его передаточной функции с стандартом передачи напряжения Функция H (jω) и записывается в виде:

Примечание: (jω) также можно записать как (s) для обозначения S-области. и результирующая передаточная функция для фильтра нижних частот второго порядка задается как:

Нормализованные полиномы фильтра Баттерворта низких частот

Чтобы помочь в разработке своих фильтров нижних частот, Баттерворт создал стандартные таблицы нормализованных полиномов нижних частот второго порядка с учетом значений коэффициента, которые соответствуют частоте отсечки угла 1 радиан / с.

N Нормализованные полиномы знаменателя в факторизованной форме
1 (1 + S)
2 (1 + 1,414 с + с 2)
3 (1 + с) (1 + с + с 2)
4 (1 + 0,765 с + с 2) (1 + 1,848 с + с 2)
5 (1 + с) (1 + 0,618 с + с 2) (1 + 1,618 с + с 2)
6 (1 + 0,518 с + с 2) (1 + 1,414 с + с 2) (1 + 1,932 с + с 2)
7 (1 + с) (1 + 0,445 с + с 2) (1 + 1,247 с + с 2) (1 + 1,802 с + с 2)
8 (1 + 0,390 с + с 2) (1 + 1,111 с + с 2) (1 + 1,663 с + с 2) (1 + 1,962 с + с 2)
9 (1 + с) (1 + 0,347 с + с 2) (1 + с + с 2) (1 + 1,532 с + с 2) (1 + 1,879 с + с 2)
10 (1 + 0,313 с + с 2) (1 + 0,908 с + с 2) (1 + 1,414 с + с 2) (1 + 1,782 с + с 2) (1 + 1,975 с + с 2)

Расчет и схема фильтра Баттерворта низких частот

Найти порядок активного фильтра Баттерворта нижних частот, чьи характеристики приведены в качестве: A макс = 0,5 дБ на частоте полосы пропускания (ωp) 200 радиан / сек (31.8 гЦ), и A min = -20 дБ на частоте полосы остановки (ωs) 800 радиан / сек. Также разработайте подходящую схему фильтра Баттерворта, соответствующую этим требованиям.

Во-первых, максимальное усиление полосы пропускания A max = 0,5 дБ, которое равно усилению 1,0593 , помните, что: 0,5 дБ = 20 * log (A) на частоте (ωp) 200 рад / с, поэтому значение эпсилона ε находится по:

Во-вторых, минимальное усиление полосы остановки A min = -20 дБ, которое равно усилению 10 (-20 дБ = 20 * log (A)) на частоте полосы остановки (ωs) 800 рад / с или 127,3 Гц.

Подстановка значений в общее уравнение для частотной характеристики фильтров Баттерворта дает нам следующее:

Так как n всегда должно быть целым числом, то следующим самым высоким значением 2,42 будет n = 3 , поэтому «требуется фильтр третьего порядка», и для создания фильтра Баттерворта третьего порядка, ступени фильтра второго порядка требуется каскадное соединение со ступенью фильтра первого порядка.

Из приведенной выше таблицы нормализованных полиномов Баттерворта низких частот коэффициент для фильтра третьего порядка дается как (1 + s) (1 + s + s 2), и это дает нам усиление 3-A = 1 или A = 2 . В А = 1 + (Rf / R1) , выбирая значение как для резистора обратной связи Rf и резистора R1 дает нам значения 1 кОм и 1 кОм, соответственно, как: (1 кОм / 1 кОм) + 1 = 2 .

Мы знаем, что угловая частота отсечки, точка -3 дБ (ω o) может быть найдена с помощью формулы 1 / CR , но нам нужно найти ω o по частоте полосы пропускания ω p ,

Таким образом, частота отсечки угла задается как 284 рад / с или 45,2 Гц (284 / 2π), и, используя знакомую формулу 1 / RC, мы можем найти значения резисторов и конденсаторов для нашей схемы третьего порядка.

Обратите внимание, что ближайшее предпочтительное значение до 0,352 мкФ будет 0,36 мкФ или 360 нФ.

И, наконец, наша схема низкочастотного фильтра Баттерворта третьего порядка с угловой частотой среза 284 рад / с или 45,2 Гц, максимальным усилением полосы пропускания 0,5 дБ и минимальным усилением полосы остановки 20 дБ строится следующим образом.

Таким образом, для нашего фильтра низких частот Баттерворта 3-го порядка с угловой частотой 45,2 Гц, C = 360 нФ и R = 10 кОм

Страница 1 из 2

Определим порядок фильтра исходя из требуемых условий по графику для затухания в полосе задерживания в книге Г.Лэм «Аналоговые и цифровые фильтры» гл.8.1 стр.215.

Понятно, что для необходимого затухания достаточно фильтра 4 порядка. График приведён для случая, когда w с =1 рад/с, а соответственно частота, на которой нужно необходимое затухание – 2 рад/с (соответственно 4 и 8 кГц). Общий график для передаточной функции фильтра Баттерворта:

Определяем схемную реализацию фильтра:

активный фильтр нижних частот четвёртого порядка со сложной отрицательной обратной связью:

Чтобы желаемая схема имела желаемую амплитудно-частотную характеристику, входящие в неё элементы могут быть подобраны с не очень высокой точностью, что является плюсом данной схемы.

активный фильтр нижних частот четвёртого порядка с положительной обратной связью:

В данной схеме коэффициент усиления операционного усилителя должен иметь строго определённое значение, а коэффициент передачи данной схемы будет не больше 3. Поэтому данную схему можно отбросить.

активный фильтр нижних частот четвёртого порядка с омической отрицательной обратной связью

Данный фильтр построен на четырех операционниках, что увеличивает помехи и сложность расчёта данной схемы, поэтому её мы также отбрасываем.

Из рассмотренных схем мы выбираем фильтр со сложной отрицательной обратной связью.

Расчёт фильтра

Определение передаточной функции

Записываем табличные значения коэффициентов для фильтра Баттерворта четвёртого порядка:

a 1 =1.8478 b 1 =1

a 2 =0.7654 b 2 =1

(см. У.Титце, К.Шенк «Полупроводниковая схемотехника» табл.13.6 стр. 195)

Общее выражение передаточной функции для ФНЧ четвёртого порядка:

(см. У.Титце, К.Шенк «Полупроводниковая схемотехника» табл.13.2 стр. 190 и форм. 13.4 стр. 186).

Передаточная функция первого звена имеет вид:

Передаточная функция второго звена имеет вид:

где w с – круговая частота среза фильтра, w с =2pf c .

Расчёт номиналов деталей

Приравняв коэффициенты выражений (2) и (3) коэффициентам выражения (1) получим:

Коэффициенты передачи постоянного сигнала для каскадов, их произведение А 0 должно быть равно 10 по заданию. Они отрицательные, так как данные каскады являются инвертирующими, однако их произведение даёт положительный коэффициент передачи.

Для расчёта схемы лучше задаться емкостями конденсаторов, при этом для того, чтобы значение R 2 было действительным, должно выполняться условие

и соответственно

Исходя из этих условий выбирается С 1 =С 3 =1 нФ, С 2 =10 нФ, С 4 =33 нФ.

Рассчитываем значения сопротивлений для первого каскада:

Значения сопротивлений второго каскада:

Выбор ОУ

При выборе ОУ необходимо учитывать диапазон частот фильтра: частота единичного усиления ОУ (на которой коэффициент усиления равен единице) должна быть больше произведения частоты среза и коэффициента усиления фильтра K у.

Поскольку максимальный коэффициент усиления равен 3.33, а частота среза 4 кГц, то этому условию удовлетворяют почти все существующие ОУ.

Другим важным параметром ОУ является его входное сопротивление. Оно должно быть больше десятикратного максимального сопротивления резистора схемы.

Максимальное сопротивление в схеме равно 99.6 кОм, следовательно входное сопротивление ОУ должно быть не менее 996 кОм.

Так же необходимо учитывать нагрузочную способность ОУ. Для современных ОУ минимальное сопротивление нагрузки составляет 2 кОм. Учитывая, что сопротивление R1 и R4 равны соответственно 33.2 и 3.09 кОм, выходной ток операционного усилителя будет заведомо меньше максимально допустимого.

В соответствии с вышеприведёнными требованиями выбираем ОУ К140УД601 со следующими паспортными данными (характеристиками):

K у. min = 50 000

R вх = 1 МОм

Фильтр Баттерворта

Передаточная функция фильтра нижних частот Баттерворта n -го порядка характеризуется выражением:

Амплитудно-частотная характеристика фильтра Баттерворта обладает следующими свойствами:

1) При любом порядке n значение АЧХ

2) на частоте среза щ=щ с

АЧХ ФНЧ монотонно убывает с ростом частоты. По этой причине фильтры Баттерворта называют фильтрами с максимально плоскими характеристиками. На рисунке 3 показаны графики амплитудно-частотных характеристик ФНЧ Баттерворта 1-5 порядков. Очевидно, что чем больше порядок фильтра, тем точнее аппроксимируется АЧХ идеального фильтра нижних частот.

Рисунок 3 - АЧХ для фильтра Баттерворта нижних частот порядка от 1 до 5

На рисунке 4 представлена схемная реализация ФВЧ Баттерворта.

Рисунок 4 - ФВЧ-II Баттерворта

Достоинством фильтра Баттерворта является максимально гладкая АЧХ на частотах полосы пропускания и ее снижение практически до нуля на частотах полосы подавления. Фильтр Баттерворта -- единственный из фильтров, сохраняющий форму АЧХ для более высоких порядков (за исключением более крутого спада характеристики на полосе подавления) тогда как многие другие разновидности фильтров (фильтр Бесселя, фильтр Чебышева, эллиптический фильтр) имеют различные формы АЧХ при различных порядках.

Однако в сравнении с фильтрами Чебышева I и II типов или эллиптическим фильтром, фильтр Баттерворта имеет более пологий спад характеристики и поэтому должен иметь больший порядок (что более трудно в реализации) для того, чтобы обеспечить нужные характеристики на частотах полосы подавления.

Фильтр Чебышева

Квадрат модуля передаточной функции фильтра Чебышева определяется выражением:

где - полином Чебышева. Модуль передаточной функции фильтра Чебышева равен единице на тех частотах, где обращается в нуль.

Фильтры Чебышева обычно используются там, где требуется с помощью фильтра небольшого порядка обеспечить требуемые характеристики АЧХ, в частности, хорошее подавление частот из полосы подавления, и при этом гладкость АЧХ на частотах полос пропускания и подавления не столь важна.

Различают фильтры Чебышева I и II родов.

Фильтр Чебышева I рода. Это более часто встречающаяся модификация фильтров Чебышева. В полосе пропускания такого фильтра видны пульсации, амплитуда которых определяется показателем пульсации е. В случае аналогового электронного фильтра Чебышева его порядок равен числу реактивных компонентов, использованных при его реализации. Более крутой спад характеристики может быть получен если допустить пульсации не только в полосе пропускания, но и в полосе подавления, добавив в передаточную функцию фильтра нулей на мнимой оси jщ в комплексной плоскости. Это, однако, приведёт к меньшему эффективному подавлению в полосе подавления. Полученный фильтр является эллиптическим фильтром, также известным как фильтр Кауэра.

АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка представлена на рисунке 5.

Рисунок 5 - АЧХ для фильтра Чебышева нижних частот I рода четвёртого порядка

Фильтр Чебышева II рода (инверсный фильтр Чебышева) используется реже, чем фильтр Чебышева I рода ввиду менее крутого спада амплитудной характеристики, что приводит к увеличению числа компонентов. У него отсутствуют пульсации в полосе пропускания, однако присутствуют в полосе подавления.

АЧХ для фильтра Чебышева нижних частот II рода четвёртого порядка представлена на рисунке 6.

Рисунок 6 - АЧХ для фильтра Чебышева нижних частот II рода

На рисунке 7 представлены схемные реализации ФВЧ Чебышева I и II порядка.

Рисунок 7 - ФВЧ Чебышева: а) I порядка; б) II порядка

Свойства частотных характеристик фильтров Чебышева:

1) В полосе пропускания АЧХ имеет равноволновой характер. На интервале (-1?щ?1) имеется n точек, в которых функция достигает максимального значения, равного 1, или минимального значения, равного. Если n нечетно, если n четно;

2) значение АЧХ фильтра Чебышева на частоте среза равно

3) При функция монотонно убывает и стремится к нулю.

4) Параметр е определяет неравномерность АЧХ фильтра Чебышева в полосе пропускания:

Сравнение АЧХ фильтров Баттерворта и Чебышева показывает, что фильтр Чебышева обеспечивает большее ослабление в полосе пропускания, чем фильтр Баттерворта такого же порядка. Недостаток фильтров Чебышева заключается в том, что их фазочастотные характеристики в полосе пропускания значительно отличаются от линейных.

Для фильтров Баттерворта и Чебышева имеются подробные таблицы, в которых приведены координаты полюсов и коэффициенты передаточных функций различных порядков.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет радиоэлектроники

Кафедра РЭУ

КУРСОВАЯ РАБОТА

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ФИЛЬТР ВЕРХНИХ ЧАСТОТ БАТТЕРВОРТА

Харьков 2008 г.


Техническое задание

Спроектировать фильтр верхних частот (ФВЧ) с аппроксимацией амплитудно-частотной характеристики (АЧХ) полиномом Баттерворта, определить необходимый порядок фильтра, если заданы параметры АЧХ (рис.1): К 0 =26дБ

U m Вх =250мВ

где - максимальный коэффициент передачи фильтра;

Минимальный коэффициент передачи в полосе пропускания;

Максимальный коэффициент передачи фильтра в полосе задержки;

Частота среза;

Частота, начиная с которой коэффициент передачи фильтра меньше .

Рисунок 1 – Шаблон ФВЧ Баттерворта.

Обеспечить небольшую чувствительность к отклонениям номиналов элементов.

РЕФЕРАТ

Расчётно-пояснительная записка: 26 с., 11 рис., 6 табл.

Цель работы: синтез схемы активного RC-фильтра верхних частот и расчёт её компонентов.

Метод исследования: аппроксимация АЧХ фильтра полиномом Баттерворта.

Аппроксимированная передаточная функция реализована с помощью активного фильтра. Фильтр построен каскадным соединением независимых звеньев. В активных фильтрах использованы неинвертирующие усилители с конечным усилением, которые реализованы с помощью операционных усилителей.

Результаты работы могут использоваться для синтеза фильтров радиотехнической и бытовой аппаратуры.


Вступление

1. Обзор аналогичных схем

3.1 Осуществление нормировки ФВЧ

3.2 Определение необходимого порядка фильтра

3.3 Определение полинома Баттерворта

3.4 Обратный переход от нормированного к проектируемому ФВЧ

3.5Переход от передаточной функции к схеме

3.6Переход от передаточной функции к схеме

4. Расчёт элементов схемы

5. Методика настройки регулировки разработанного фильтра


Вступление

До недавнего времени результаты сопоставления цифровых и аналоговых устройств в радиоаппаратуре и технических средствах электросвязи не могли не вызывать чувства неудовлетворённости. Цифровые узлы, реализуемые с широким использованием интегральных микросхем (ИМС), выгодно отличались своей конструктивно-технологической завершённостью. Иначе обстояло дело с узлами аналоговой обработки сигналов, которые, например, в телекоммуникациях составляли от 40 до 60% объёма и массы аппаратуры связи. Громоздкие, содержащие большое число ненадёжных и трудоёмких намоточных элементов, они выглядели на фоне больших интегральных схем столь удручающе, что породили у ряда специалистов мнение о необходимости “тотальной цифризации” радиоэлектронной аппаратуры.

Последнее, однако, как любая другая крайность, не привело (да и не могло привести) к результатам, адекватным ожидаемым. Истина, как и во всех других случаях, оказалась где-то посередине. В ряде случаев более эффективной оказывается аппаратура, построенная на функциональных аналоговых узлах, элементный базис которых адекватен возможностям и ограничениям микроэлектроники.

Адекватность в данном случае может быть обеспечена переходом к активным RC-цепям, в элементный базис которых не входят катушки индуктивностей и трансформаторы, принципиально не реализуемые средствами микроэлектроники.

Обоснованность такого перехода определяется в настоящее время, с одной стороны, достижениями теории активных RC-цепей, а с другой – успехами микроэлектроники, предоставившей в распоряжение разработчиков высококачественные линейные интегральные схемы, в том числе и интегральные операционные усилители (ОУ). Эти ОУ, обладая большими функциональными возможностями, существенно обогатили аналоговую схемотехнику. Особенно ярко это проявилось в схемотехнику активных фильтров.

До 60-х годов для реализации фильтров применялись, в основном пассивные элементы, т.е. индуктивности, конденсаторы и резисторы. Основной проблемой при реализации таких фильтров оказывается размер катушек индуктивности (на низких частотах они становятся слишком громоздкими). С разработкой в 60-х годах интегральных операционных усилителей появилось новое направление проектирования активных фильтров на базе ОУ. В активных фильтрах применяются резисторы, конденсаторы и ОУ (активные компоненты), но в них нет катушек индуктивности. В дальнейшем активные фильтры почти полностью заменили пассивные. Сейчас пассивные фильтры применяются только на высоких частотах (выше 1 МГц), за пределами частотного диапазона большинства ОУ широкого применения. Но даже во многих высокочастотных устройствах, например в радиопередатчиках и приёмниках, традиционные RLC-фильтры заменяются кварцевыми фильтрами и фильтрами на поверхностных акустических волнах.

Сейчас во многих случаях аналоговые фильтры заменяются цифровыми. Работа цифровых фильтров обеспечивается, в основном, программными средствами, поэтому они оказываются значительно более гибкими в применении по сравнению с аналоговыми. С помощью цифровых фильтров можно реализовать такие передаточные функции, которые очень трудно получить обычными методами. Тем не менее, цифровые фильтры пока не могут заменить аналоговые во всех ситуациях, поэтому сохраняется потребность в наиболее популярных аналоговых фильтрах – активных RC-фильтрах.


1. Обзор аналогичных схем

Фильтры – это частотно-избирательные устройства, которые пропускают или задерживают сигналы, лежащие в определённых полосах частот.

Фильтры можно классифицировать по их частотным характеристикам:

1. Фильтры нижних частот (ФНЧ) – пропускают все колебания с частотами не выше некоторой частоты среза и постоянную составляющую.

2. Фильтры верхних частот (ФНЧ) – пропускают все колебания не ниже некоторой частоты среза.

3. Полосовые фильтры (ПФ) – пропускают колебания в определённой полосе частот, которая определяется по некоторому уровню частотной характеристики.

4. Полосно-подавляющие фильтры (ППФ) - задерживают колебания в определённой полосе частот, которая определяется по некоторому уровню частотной характеристики.

5. Режекторные фильтры (РФ) – вид ППФ, имеющий узкую полосу задержки и называемый ещё фильтром-пробкой.

6. Фазовые фильтры (ФФ) – имеют постоянный в идеальном случае коэффициент передачи на всех частотах и предназначен для изменения фазы входных сигналов (в частности для временной задержки сигналов).

Рисунок 1.1 – Основные типы фильтров


С помощью активных RC-фильтров нельзя получить идеальные формы частотных характеристик в виде показанных на рис.1.1 прямоугольников со строго постоянным коэффициентом передачи в полосе пропускания, бесконечным ослаблением в полосе подавления и бесконечной крутизной спада при переходе от полосы пропускания к полосе подавления. Проектирование активного фильтра всегда представляет собой поиск компромисса между идеальной формой характеристики и сложностью её реализации. Это называется “проблемой аппроксимации“. Во многих случаях требования к качеству фильтрации позволяют обойтись простейшими фильтрами первого и второго порядков. Некоторые схемы таких фильтров представлены ниже. Проектирование фильтра в этом случае сводиться к выбору схемы с наиболее подходящей конфигурацией и последующему расчёту значений номиналов элементов для конкретных частот.

Однако бывают ситуации, когда требования к фильтрации могут оказаться гораздо более жёсткими, и могут потребоваться схемы более высоких порядков, чем первый и второй. Проектирование фильтров высоких порядков является более сложной задачей, чему посвящена данная курсовая работа.

Ниже приведены некоторые основные схемы первого второго порядков с описанием достоинств и недостатков каждой из них.

1. ФНЧ-I и ФВЧ-Iна основе не инвертирующего усилителя.

Рисунок 1.2 – Фильтры на основе неинвертирующего усилителя:

а) ФНЧ-I, б) ФВЧ-I.

К достоинствам схем фильтров можно отнести главным образом простоту реализации и настройки, недостатки – малая крутизна частотных характеристик, малоустойчивы к самовозбуждению.

2. ФНЧ-IIи ФВЧ-IIс много петлевой обратной связью.

Рисунок 1.3 – Фильтры с многопетлевой обратной связью:

а) ФНЧ-II, б) ФВЧ-II.

Таблица 2.1 – Достоинства и недостатки ФНЧ-II с много петлевой обратной связью

Таблица 2.2 – Достоинства и недостатки ФВЧ-II с много петлевой обратной связью

2. ФНЧ-IIи ФВЧ-IIСаллена-Кея.

Рисунок 1.4 – Фильтры Саллена-Кея:

а) ФНЧ-II, б) ФВЧ-II

Таблица 2.3 – Достоинства и недостатки ФНЧ-II Саллена-Кея.

Таблица 2.4 – Достоинства и недостатки ФВЧ-II Саллена-Кея.


3. ФНЧ-IIи ФВЧ-IIна основе конверторов полного сопротивления.

Рисунок 1.5 – Схема ФНЧ IIна основе конверторов полного сопротивления:

а) ФНЧ-II, б) ФВЧ-II.

Таблица 2.3 – Достоинства и недостатки ФНЧ-II и ФВЧ-II на основе конверторов полного сопротивления.


2. Выбор и обоснование схемы фильтра

Методы проектирования фильтров отличаются по конструктивным особенностям. Проектирования пассивных RC-фильтров большей частью определяется структурной схемой

Активные фильтры АФ математически описывают передаточною функцией. Типам АЧХ предоставлен названия полиномов передаточных функций. Каждый тип АЧХ реализуют определенным количеством полюсов (RC-цепей) в соответствии с заданной крутизной спада АЧХ. Известнейшими, есть аппроксимации Баттерворта, Бесселя, Чебышева.

Фильтр Баттерворта имеет максимально плоскую АЧХ, в полосе подавления наклон переходного участка равняется 6 дБ/окт на полюс, но он имеет нелинейную ФЧХ, входное импульсное напряжение служит причиной осцилляции на выходе, потому фильтр используется для непрерывных сигналов.

Фильтр Бесселя имеет линейную ФЧХ, небольшую крутизну переходного участка АЧХ. Сигналы всех частот в полосе пропускания имеют одинаковые временные задержки, поэтому он пригодный для фильтрации прямоугольных импульсов, которые надо посылать без искажений.

Фильтр Чебышева - фильтр равных волн в СП, масс плоскую форму за ее пределами, пригодный для непрерывных сигналов в случаях, капы надо иметь крутой склон АЧХ за частотой среза.

Простые схемы фильтров первого и второго порядков применяются лишь, когда нет жестких требований к качеству фильтрации.

Каскадное соединение звеньев фильтра осуществляют, если нужен порядок фильтра выше второго, то есть когда надо сформировать передаточную характеристику с очень большим послаблением сигналов в полосе подавленный и большой крутизной затухания АЧХ Результирующую передаточную функцию получают, перемножая частичные коэффициенты передачи

Цепи строят по одинаковой схеме, но номиналы элементов

R, С разные, и зависят от частот среза фильтра и его ланок: f зр.ф /f зр.л

Однако следует помнить, что каскадное соединение, например, двух фильтров Баттерворта второго порядка не дает фильтр Баттерворта четвертого порядка, так как результирующий фильтр будет иметь другую частоту среза и другую АЧХ. Поэтому необходимо выбирать коэффициенты одиночных звеньев таким образом, чтобы следующее произведение передаточных функций отвечал выбранному типу аппроксимации. Поэтому проектирования АФ вызовет затруднения со стороны получения идеальной характеристики и сложности ее реализации.

Благодаря очень большим входным и маленьким выходным сопротивлениям каждого звена обеспечивается отсутствие искажений заданной передаточной функции и возможность независимого регулирования каждого звена. Независимость звеньев дает возможность широко регулировать свойства каждого звена изменением его параметров.

Принципиально не имеет значения, в котором порядке размещенные частичные фильтры, так как результирующая передаточная функция всегда будет одинаковой. Тем не менее, существуют разнообразные практические рекомендации относительно порядка соединения частичных фильтров. Например, для защиты от самовозбуждения следует организовать последовательность звеньев в порядке возрастания частичной предельной частоты. Другой порядок может привести к самовозбуждению второго звена в области выброса его АЧХ, поскольку фильтры с высшими предельными частотами обычно имеют большую добротность в области граничной частоты.

Другой критерий, связан с требованиями минимизации, уровня шумов на входе. В этом случае последовательность звеньев обратная, так как фильтр с минимальной предельной частотой ослабляет уровень шума, который возникает от предыдущих звеньев каскада.


3. Топологическая модель фильтра и передаточная функция по напряжению

3.1 В данном пункте будет выбран порядок ФВЧ Баттерворта и определён вид его передаточной функции согласно заданным в ТЗ параметрам:

Рисунок 2.1 – Шаблон ФВЧ согласно техническому заданию.

Топологическая модель фильтра.

3.2 Осуществление нормировки ФВЧ

По условию задания находим нужные нам граничные условия частоты фильтра. И нормируем за коэффициентом передачи та за частотою.

За коэффициентом передачи:

К max =K 0 -K п =26-23=3дБ

К min =К 0 -К з =26-(-5)=31дБ

По частоте:

3.3 Определение необходимого порядка фильтра

Округляем nдо ближайшего целого значения: n = 3.

Таким образом, для удовлетворения требований, заданных шаблоном, необходим фильтр третьего порядка.

3.4 Определение полинома Баттерворта

Согласно таблице нормированных передаточных функций фильтров Баттерворта находим полином Баттерворта третьего порядка:

3.5 Обратный переход от нормированного к проектируемому ФВЧ

Проведём обратный переход от нормированного ФВЧ к проектируемому ФВЧ.

· масштабирование по коэффициенту передачи:

· масштабирование по частоте:

Производим замену

В результате масштабирования получаем передаточную функцию W(p) в виде:

Рисунок 2.2 – АЧХ проектируемого ФВЧ Баттерворта.

3.6 Переход от передаточной функции к схеме

Представим передаточную функцию проектируемого ФВЧ третьего порядка в виде произведения передаточных функций двух активных ФВЧ первого и второго порядка, т.е. в виде

и ,

где – коэффициент передачи на бесконечно высокой частоте;

– частота полюса;

– добротность фильтра (отношение коэффициента усиления на частоте к коэффициенту усиления в полосе пропускания).

Этот переход справедлив, так как общий порядок последовательно соединенных активных фильтров будет равен сумме порядков отдельно взятых фильтров (1 + 2 = 3).

Общий коэффициент передачи фильтра (K0 = 19.952) будет определяться произведением коэффициентов передачи отдельных фильтров (K1, K2).

Разложив передаточную функцию на квадратичные сомножители, получим:

В этом выражении

. (2.5.1)

Нетрудно заметить, что частоты полюсов и добротности передаточных функций отличаются.

Для первой передаточной функции:

частота полюса ;

добротность ФВЧ-Iпостоянна и равна .

Для второй передаточной функции:

частота полюса ;

добротность .

Для того чтобы к операционным усилителям в каждом каскаде предъявлялись примерно равные требования по частотным свойствам, целесообразно общий коэффициент передачи всего фильтра распределить между каждым из каскадов обратно пропорционально добротности соответствующих каскадов, а характерную частоту (частоту единичного усиления ОУ) выбрать максимальную среди всех каскадов.

Так как в данном случае ФВЧ состоит из двух каскадов, то указанное выше условие можно записать в виде:

. (2.5.2)

Подставляя выражение (2.5.2) в (2.5.1), получаем:

;

Проверим правильность расчёта коэффициентов передачи. Общий коэффициент передачи фильтра в разах будет определяться произведением коэффициентов отдельных фильтров. Переведём коэффициент издБ в разы:

Т.е. расчёты верны.

Запишем передаточную характеристику с учётом расcчитанных выше величин ():

.

3.7 Выбор схемы активного ФВЧ третьего порядка

Так как согласно заданию необходимо обеспечить небольшую чувствительность к отклонениям элементов, то выберем в качестве первого каскада ФВЧ-Iна основе не инвертирующего усилителя (рис.1.2,б), а второго – ФВЧ-IIна основе конверторов полного сопротивления (КПС), схема которого приведена на рис.1.5,б.

Для ФВЧ-I на основе не инвертирующего усилителя зависимость параметров фильтра от номиналов элементов схемы таково:

Для ФВЧ-IIна основе КПС параметры фильтра зависят от номиналов элементов следующим образом:

; (3.4)

;


4. Расчёт элементов схемы

· Расчёт первого каскада (ФВЧ I) с параметрами

Выберем R1 исходя из требований к величине входного сопротивления (): R1 = 200 кОм. Тогда из (3.2) следует, что

.

Выберем R2 = 10 кОм, тогда из (3.1) следует, что

· Расчёт второго каскада (ФВЧ II) с параметрами

. .

Тогда (коэффициент в числителе подобран так, чтобы получить номинал ёмкости из стандартного ряда Е24). Итак С2 = 4.3 нФ.

Из (3.3) следует, что

Из (3.1) следует, что

Пусть . Итак С1 = 36 нФ.

Таблица 4.1– Номиналы элементов фильтра

Из данных таблицы 4.1мы можем приступить к моделированию схемы фильтра.

Это мы делаем при помощи специальной программы Workbench5.0.

Схема и результаты моделирования приведены на рис.4.1. и рис.4.2,а-б.


Рисунок 4.1 – Схема ФВЧ Баттерворта третьего порядка.

Рисунок 4.2– Результирующие АЧХ (а) и ФЧХ (б) фильтра.


5. Методика настройки и регулирования разработанного фильтра

Чтобы в реальном фильтре обеспечивалась нужная АЧХ, сопротивления и емкости нужно выбирать с большой точностью.

Это очень просто сделать для резисторов, если их брать с допуском не более 1%, и тяжелее для емкостей конденсаторов, потому что допуски у них в районе 5-20%. Из-за этого сначала рассчитывается емкость, а потом рассчитывается сопротивление резисторов.

5.1 Выбор типа конденсаторов

· Выберем низкочастотный тип конденсаторов в силу их меньшей стоимости.

· Необходимы небольшие габариты и масса конденсаторов

· Выбирать конденсаторы нужно с как можно меньшими потерями (с маленьким тангенсом угла диэлектрических потерь).

Некоторые параметры группы К10-17 (взяты из ):

Размеры, мм.

Масса, г0,5…2

Допускаемое отклонение ёмкости, %

Тангенс угла потерь0,0015

Сопротивление изоляции, МОм1000

Диапазон рабочих температур, – 60…+125

5.2 Выбор типа резисторов

· Для схемы проектируемого фильтра, чтобы обеспечить низкую температурную зависимость, необходимо выбирать резисторы с минимальным ТКС.

· Выбираемые резисторы должны обладать минимальными собственными ёмкостью и индуктивностью, поэтому выберем непроволочный тип резисторов.

· Однако у непроволочных резисторов более высокий уровень токовых шумов, поэтому необходимо учесть и параметр уровня собственных шумов резисторов.

Прецизионные резисторы типа С2-29В удовлетворяют заданным требованиям (параметры взяты из ):

Номинальная мощность, Вт 0.125;

Диапазон номинальных сопротивлений, Ом ;

ТКС (в интервале температур ),

ТКС (в интервале температур ),

Уровень собственных шумов, мкВ/В1…5

Предельное рабочее напряжение постоянного

и переменного тока, В200

5.3 Выбор типа операционных усилителей

· Главный критерий при выборе ОУ – это его частотные свойства, так как реальные ОУ имеют конечную полосу пропускания. Для того чтобы частотные свойства ОУ не влияли на характеристику проектируемого фильтра, необходимо чтоб для частоты единичного усиления ОУ в i-том каскаде выполнялось соотношение:

Для первого каскада: .

Для второго каскада: .

Выбирая большее значение, получаем, что частота единичного усиления ОУ не должна быть менее 100 Кгц.

· Коэффициент усиления ОУ должен быть достаточно большим.

· Напряжение питания ОУ должно соответствовать напряжению источников питания, если таковое известно. В противном случае, желательно выбрать ОУ с широким диапазоном напряжений питания.

· При выборе ОУ для многокаскадного ФВЧ лучше выбрать ОУ с возможно меньшим напряжения смещения.

Согласно справочнику выберем ОУ типа 140УД6А, конструктивно оформленный в корпусе типа 301.8-2. ОУ этого типа являются ОУ общего назначения с внутренней частотной коррекцией и защитой выхода при коротких замыканиях нагрузки и имеют следующие параметры:

Напряжение питания , В

Напряжение питания , В

Ток потребления , мА

Напряжение смещения, мВ

Коэффициент усиления ОУ по напряжению

Частота единичного усиления , МГц1


5.4 Методика настройки и регулировки разработанного фильтра

Настройка данного фильтра не представляет большой сложности. Параметры частотной характеристики “подгоняются” с помощью резисторов, как первого, так и второго каскадов независимо друг от друга, при чём настройка одного параметра фильтра не влияет на значения других параметров.

Настройка проводится следующим образом:

1. Коэффициент усиления устанавливается резисторами R2 первого и R5 второго каскада.

2. Частота полюса первого каскада настраивается резистором R1, частота полюса второго каскада – резистором R4.

3. Добротность второго каскада регулируется резистором R8, а добротность первого каскада не регулируется (постоянна при любых номиналах элементов).


Итогом данной курсовой работы является получение и расчёт схемы заданного фильтра. ФВЧ с аппроксимацией частотных характеристик полиномом Баттерворта с параметрами, приведенными в техническом задании, имеет третий порядок и представляет собой двокаскадно - соединённых ФВЧ первого порядка (на основе не инвертирующего усилителя) и второго порядка (на основе конвертеров полного сопротивления). Схема содержит три операционных усилителя, восемь резисторов и три ёмкости. В данной схеме используется два источника питания по 15 В каждый.

Выбор схемы для каждого каскада общего фильтра проводился на основании технического задания (обеспечить малую чувствительность к отклонениям номиналов элементов) с учётом достоинств и недостатков каждого типа схем фильтров, используемых в качестве каскадов общего фильтра.

Номиналы элементов схемы подбирались и рассчитывались таким образом, чтобы максимально приблизить их к стандартному номинальному ряду Е24, а также, чтобы получить при этом как можно большее входное сопротивление каждого каскада фильтра.

После моделирования схемы фильтра с помощью пакета ElectronicsWorkbench5.0 (рис.5.1) были получены частотные характеристики (рис.5.2), имеющие требуемые параметры, приведённые в техническом задании (рис.2.2).

К достоинствам данной схемы можно отнести простоту настройки всех параметров фильтра, независимую настройку каждого каскада отдельно, малую чувствительность к отклонениям от номиналов элементов.

Недостатками является использование в схеме фильтра трёх операционных усилителей и соответственно его повышенная стоимость, а также относительно невысокое входное сопротивление (порядка 50 кОм).

Список использованной литературы

1. Зеленин А.Н., Костромицкий А.И., Бондарь Д.В. – Активные фильтры на операционных усилителях. – Х.: Телетех, 2001. изд. второе, исправ. и доп. – 150 с.: ил.

2. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справ./Н.Н. Акимов, Е.П. Ващуков, В.А. Прохоренко, Ю.П. Ходоренок. – Мн.: Беларусь, 2004. – 591 с.:ил.

Аналоговые интегральные схемы: Справ./А.Л. Булычёв, В.И. Галкин, 382 с.: В.А. Прохоренко. – 2-е изд., перераб. и доп. – Мн.: Беларусь, 1993. – черт.

АЧХ фильтра Баттерворта описывается уравнением

Особенности фильтра Баттерворта: нелинейная ФЧХ; частота среза не зависящая от числа полюсов; колебательный характер переходной характеристики при ступенчатом входном сигнале. С увеличением порядка фильтра колебательный характер усиливается.

Фильтр Чебышева

АЧХ фильтра Чебышева описывается уравнением

,

где T n 2 (ω/ω н ) – полином Чебышева n –го порядка.

Полином Чебышева вычисляется по рекуррентной формуле

Особенности фильтра Чебышева: повышенная неравномерность ФЧХ; волнообразная характеристика в полосе пропускания. Чем выше коэффициент неравномерности АЧХ фильтра в полосе пропускания, тем более резкий спад в переходной области при одном и том же порядке. Колебания переходного процесса при ступенчатом входном сигнале сильнее, чем у фильтра Баттерворта. Добротность полюсов фильтра Чебышева выше, чем у фильтра Баттерворта.

Фильтр Бесселя

АЧХ фильтра Бесселя описывается уравнением

,

где
;B n 2 (ω/ω cp з ) – полином Бесселя n -го порядка.

Полином Бесселя вычисляется по рекуррентной формуле

Особенности фильтра Бесселя: достаточно равномерные АЧХ и ФЧХ, аппроксимируемые функцией Гаусса; фазовый сдвиг фильтра пропорционален частоте, т.е. фильтр обладает частотно-независимым групповым временем задержки. Частота среза изменяется при изменении количества полюсов фильтра. Спад АЧХ фильтра обычно более пологий, чем у Баттерворта и Чебышева. Особенно хорошо этот фильтр подходит для импульсных цепей и фазочувствительной обработки сигнала.

Фильтр Кауэра (эллиптический фильтр)

Общий вид передаточной функции фильтра Кауэра

.

Особенности фильтра Кауэра: неравномерная АЧХ в полосе пропускания и в полосе задерживания; самый резкий спад АЧХ из всех приведенных фильтров; реализует требуемые передаточные функции при меньшем порядке фильтра, чем при использовании фильтров других типов.

Определение порядка фильтра

Требуемый порядок фильтра определяется по приведенным ниже формулам и округляется в сторону ближайшего целого значения. Порядк фильтра Баттерворта

.

Порядка фильтра Чебышева

.

Для фильтра Бесселя не существует формулы расчета порядка, вместо этого приводятся таблицы соответствия порядка фильтра минимально необходимым на заданной частоте отклонению времени задержки от единичной величины и уровню потерь в дБ).

При расчете порядка фильтра Бесселя задаются следующие параметры:

    Допустимое процентное отклонение группового времени задержки на заданной частоте ω ω cp з ;

    Может быть задан уровень ослабления коэффициента передачи фильтра в дБ на частоте ω , нормированной относительно ω cp з .

На основании этих данных определяется требуемый порядок фильтра Бесселя.

Схемы каскадов фнч 1–го и 2–го порядка

На рис. 12.4, 12.5 приведены типовые схемы каскадов ФНЧ.


а ) б )

Рис. 12.4. Каскады ФНЧ Баттерворта, Чебышева и Бесселя: а – 1–го порядка; б – 2–го порядка


а ) б )

Рис. 12.5. Каскады ФНЧ Кауэра: а – 1–го порядка; б – 2–го порядка

Общий вид передаточных функций ФНЧ Баттерворта, Чебышева и Бесселя 1–го и 2–го порядка

,
.

Общий вид передаточных функций ФНЧ Кауэра 1–го и 2–го порядка

,
.

Ключевым отличием фильтра Кауэра 2–го порядка от заграждающего фильтра является то, что в передаточной функции фильтра Кауэра отношение частот Ω s ≠ 1.

Методика расчета ФНЧ Баттерворта, Чебышева и Бесселя

Данная методика построена на основе коэффициентов, приведенных в таблицах и справедлива для фильтров Баттерворта, Чебышева и Бесселя. Методика расчета фильтров Кауэра приводится отдельно. Расчет ФНЧ Баттерворта, Чебышева и Бесселя начинается с определения их порядка. Для всех фильтров задаются параметры минимального и максимального ослабления и частота среза. Для фильтров Чебышева дополнительно определяется коэффициент неравномерности АЧХ в полосе пропускания, а для фильтров Бесселя – групповое время задержки. Далее определяется передаточная функция фильтра, которая может быть взята из таблиц, и рассчитываются его каскады 1–го и 2–го порядка, соблюдается следующий порядок расчета:

    В зависимости от порядка и типа фильтра выбираются схемы его каскадов, при этом фильтр четного порядка состоит из n /2 каскадов 2–го порядка, а фильтр нечетного порядка – из одного каскада 1–го порядка и (n 1)/2 каскадов 2–го порядка;

    Для расчета каскада 1–го порядка:

По выбранному типу и порядку фильтра определяется значение b 1 каскада 1–го порядка;

Уменьшая занимаемую площадь, выбирается номинал емкости C и рассчитывается R по формуле (можно выбрать и R , но рекомендуется выбирать C , из соображения точности)

;

Вычисляется коэффициента усиления К у U 1 каскада 1–го порядка, который определяется из соотношения

,

где К у U – коэффициент усиления фильтра в целом; К у U 2 , …, К у Un – коэффициенты усиления каскадов 2–го порядка;

Для реализации усиления К у U 1 необходимо задать резисторы, исходя из следующего соотношения

R B = R A ּ(К у U1 –1) .

    Для расчета каскада 2–го порядка:

Уменьшая занимаемую площадь выбраются номиналы емкостей C 1 = C 2 = C ;

Выбраются по таблицам коэффициенты b 1 i и Q pi для каскадов 2–го порядка;

По заданному номиналу конденсаторов C рассчитываются резисторы R по формуле

;

Для выбранного типа фильтра необходимо задать соответствующий коэффициент усиления К у Ui = 3 – (1/Q pi ) каждого каскада 2-го порядка, посредством задания резисторов, исходя из следующего соотношения

R B = R A ּ(К у Ui –1) ;

Для фильтров Бесселя необходимо умножить номиналы всех емкостей на требуемое групповое время задержки.