Передаточная функция и импульсная характеристика цепи. Переходная характеристика. Импульсная характеристика. Импульсные характеристики электрических цепей Переходная и импульсная характеристики цепи

Переходная характеристика используется при расчете реакции линейной электрической цепи, когда на ее вход подается импульс
произвольной формы. При этом входной импульс
аппроксимируют множеством ступенек и определяют реакцию цепи на каждую ступеньку, а затем находят интегральную цепи
, как сумму реакций на каждую составляющую входного импульса
.

Переходная характеристика или переходная функция
цепи –
это ее обобщенная характеристика, являющаяся временной функцией, численно равной реакции цепи на единичный скачок напряжения или тока на ее входе, при нулевых начальных условиях (рис. 13.11);

другими словами, это отклик цепи, свободной от начального запаса энергии на функцию
на входе.

Выражение переходной характеристики
зависит только от внутренней структуры и значения параметров элементов цепи.

Из определения переходной характеристики цепи следует, что при входном воздействии
реакция цепи
(рис. 13.11).

Пример. Пусть цепь подключается к источнику постоянного напряжения
. Тогда входное воздействие будет иметь вид, реакция цепи – , а переходная характеристика цепи по напряжению –
. При

.

Умножение реакции цепи
на функцию
или
означает, что переходная функция
при
и
при
, что отражаетпринцип причинности в линейных электрических цепях, т.е. отклик (на выходе цепи) не может появиться раньше момента приложения сигнала к входу цепи.

Виды переходной характеристик.

Различают следующие виды переходной характеристики:

(13.5)

– переходная характеристика цепи по напряжению;

– переходная характеристика цепи по току;

– переходное сопротивление цепи, Ом;

– переходная проводимость цепи, См,

где
– уровни входного ступенчатого сигнала.

Переходную функцию
для любого пассивного двухполюсника можно найти классическим или операторным методом.

Расчет переходной характеристики классическим методом. Пример.

Пример. Рассчитаем переходную характеристику по напряжению для цепи (рис. 13.12, а ) с параметрами .

Решение

Воспользуемся результатом, полученном в п.11.4. Согласно выражению (11.20) напряжение на индуктивности

где
.

Проведем масштабирование согласно выражению (13.5) и построение функции
(рис. 13.12,б ):

.

Расчет переходной характеристики операторным методом

Комплексная схема замещения исходной цепи примет вид на рис. 13.13.


Передаточная функция этой цепи по напряжению:

где
.

При
, т.е. при
, изображение
, а изображение напряжения на катушке
.

В этом случае оригинал
изображения
есть переходная функция цепи по напряжению, т.е.

или в общем виде:

, (13.6)

т.е. переходная функция
цепи равна обратному преобразованию Лапласа ее передаточной функции
, умноженной на изображение единичного скачка .

В рассматриваемом примере (см. рис. 13.12) передаточная функция по напряжению:

где
, а функция
имеет вид .

Примечание . Если на вход цепи подано напряжение
, то в формуле переходной функции
время необходимо заменить на выражение
. В рассмотренном примере запаздывающая передаточная функция по напряжению имеет вид:

Выводы

Переходная характеристика введена, в основном, по двум причинам.

1. Единичное ступенчатое воздействие
– скачкообразное, и потому довольно тяжелое для любой системы или цепи внешнее воздействие. Следовательно, важно знать реакцию системы или цепи именно при таком воздействии, т.е. переходную характеристику
.

2. При известной переходной характеристике
с помощью интеграла Дюамеля (см. далее пп.13.4, 13.5) можно определить реакцию системы или цепи при любой форме внешних воздействий.

Замечательная особенность линейных систем - справедливость принципа суперпозиции - открывает прямой путь к систематическому решению задач о прохождении разнообразных сигналов через такие системы. Способ динамического представления (см. гл. 1) позволяет представлять сигналы в виде сумм элементарных импульсов. Если удастся тем или иным способом иайти реакцию на выходе, возникающую под воздействием элементарного импульса на входе, то окончательным этапом решения задачи явится суммирование таких реакций.

Намеченный путь анализа основан на временном представлении свойств сигналов и систем. В равной мере применим, а порой и гораздо более удобен анализ в частотной области, когда сигналы задаются рядами или интегралами Фурье. Свойства систем при этом описываются их частотными характеристиками, которые указывают закон преобразования элементарных гармонических сигналов.

Импульсная характеристика.

Пусть некоторая линейная стационарная система описывается оператором Т. Для простоты будем полагать, что входной и выходной сигналы одномерны. По определению, импульсной характеристикой системы называется функция являющаяся откликом системы на входной сигнал Это означает, что функция h(t) удовлетворяет уравнению

Поскольку система стационарна, аналогичное уравнение будет и в случае, если входное воздействие смещено во времени на производную величину :

Следует ясно представить себе, что импульсная характеристика, так же как и порождающая ее дельта-функция, есть результат разумной идеализации. С физической точки зрения импульсная характеристика приближенно отображает реакцию системы на входной импульсный сигнал произвольной формы с единичной площадью при условии, что длительность этого сигнала пренебрежимо мала по сравнению с характерным временным масштабом системы, например периодом ее собственных колебаний.

Интеграл Дюамеля.

Зная импульсную характеристику линейной стационарной системы, можно формально решить любую задачу о прохождении детерминированного сигнала через такую систему. Действительно, в гл. 1 было показано, что входной сигнал всегда допускает представление вида

Отвечающая ему выходная реакция

Теперь примем во внимание, что интеграл есть предельное значение суммы, поэтому линейный оператор Т на основании принципа суперпозиции может быть внесен под знак интеграла. Далее, оператор Т «действует» лишь на величины, зависящие от текущего времени t, но не от переменной интегрирования х. Поэтому из выражения (8.7) следует, что

или окончательно

Эта формула, имеющая фундаментальное значение в теории линейных систем, называется интегралом Дюамеля. Соотношение (8.8) свидетельствует о том, что выходной сигнал линейной стационарной системы представляет собой свертку двух функций - входного сигнала и импульсной характеристики системы. Очевидно, формула (8.8) может быть записана также в виде

Итак, если импульсная характеристика h(t) известна, то дальнейшие этапы решения сводятся к полностью формализованным операциям.

Пример 8.4. Некоторая линейная стационарная система, внутреннее устройство которой несущественно, имеет импульсную характеристику, представляющую собой прямоугольный видеоимпульс длительностью Т. Импульс возникает при t = 0 и обладает амплитудой

Определить выходную реакцию данной системы при подаче на вход ступенчатого сигнала

Применяя формулу интеграла Дюамеля (8.8), следует обратить внимание на то, что выходной сигнал будет выглядеть по-разному в зависимости от того, превышает или нет текущее значение длительность импульсной характеристики. При имеем

Если же то при функция обращается в нуль, поэтому

Найденная выходная реакция отображается кусочно-лннейным графиком.

Обобщение на многомерный случай.

До сих пор предполагалось, что как входной, так и выходной сигналы одномерны. В более общем случае системы с входами и выходами следует ввести парциальные импульсные характеристики каждая из которых отображает сигнал на выходе при подаче на вход дельта-функции.

Совокупность функций образует матрицу импульсных характеристик

Формула интеграла Дюамеля в многомерном случае приобретает вид

где - -мерный вектор; - -мерный вектор.

Условие физической реализуемости.

Каков бы ни был конкретный вид импульсной характеристики физически осуществимой системы, всегда должен выполняться важнейший принцип: выходной сигнал, отвечающий импульсному входному воздействию, не может возникнуть до момента появления импульса на входе.

Отсюда вытекает очень простое ограничение на вид допустимых импульсных характеристик:

Такому условию удовлетворяет, например, имупльсная характеристика системы, рассмотренной в примере 8.4.

Легко видеть, что для физически реализуемой системы верхний предел в формуле интеграла Дюамеля может быть заменен на текущее значение времени:

Формула (8.13) имеет ясный физический смысл: линейная стационарная система, выполняя обработку поступающего на вход сигнала, проводит операцию взвешенного суммирования всех его мгновенных значений, существовавших «в прошлом» при - Роль весовой функции выполняет при этом импульсная характеристика системы. Принципиально важно, что физически реализуемая система ни при каких обстоятельствах не способна оперировать «будущими» значениями входного сигнала.

Физически реализуемая система должна быть, кроме того, устойчивой. Это означает, что ее импульсная характеристика должна удовлетворять условию абсолютной интегрируемости

Переходная характеристика.

Пусть на входе линейной стационарной системы действует сигнал, изображаемый функцией Хевисайда .

Выходную реакцию

принято называть переходной характеристикой системы. Поскольку система стационарна, переходная характеристика инвариантна относительно временного сдвига:

Высказанные ранее соображения о физической реализуемости системы полностью переносятся на случай, когда система возбуждается не дельта-функцией, а единичным скачком. Поэтому переходная характеристика физически реализуемой системы отлична от нуля лишь при в то время как при t Между импульсной и переходной характеристиками имеется тесная связь. Действительно, так как то на основании (8.5)

Оператор дифференцирования и линейный стационарный оператор Т могут меняться местами, поэтому

Воспользовавшись формулой динамического представления (1.4) и поступая так же, как и при выводе соотношения (8.8), получаем еще одну форму интеграла Дюамеля:

Частотный коэффициент передачи.

При математическом исследовании систем особый интерес представляют такие входные сигналы, которые, будучи преобразованы системой, остаются неизменными по форме. Если имеется равенство

то является собственной функцией системного оператора Т, а число X, в общем случае комплексное, - его собственным значением.

Покажем, что комплексный сигнал при любом значении частоты есть собственная функция линейного стационарного оператора. Для этого воспользуемся интегралом Дюамеля вида (8.9) и вычислим

Отсюда видно, что собственным значением системного оператора является комплексное число

(8.21)

называемое частотным коэффициентом передачи системы.

Формула (8.21) устанавливает принципиально важный факт - частотный коэффициент передачи и импульсная характеристика линейной стационарной системы связаны между собой преобразованием Фурье. Поэтому всегда, зная функцию можно определить импульсную характеристику

Мы подошли к важнейшему положению теории линейных стационарных систем - любую такую систему можно рассматривать либо во временной области с помощью ее импульсной или переходной характеристик, либо в частотной области, задавая частотный коэффициент передачи. Оба подхода равноценны и выбор одного из них диктуется удобствами получения исходных данных о системе и простотой вычислений.

В заключение отметим, что частотные свойства линейной системы, имеющей входов и выходов, можно описать матрицей частотных коэффициентов передачи

Между матрицами существует закон связи, аналогичный тому, который задан формулами (8.21), (8.22).

Амплитудно-частотная и фазочастотная характеристики.

Функция имеет простую интерпретацию: если на вход системы поступает гармонический сигнал с известной частотой и комплексной амплитудой то комплексная амплитуда выходного сигнала

В соответствии с формулой (8.26) модуль частотного коэффициента передачи (АЧХ) есть четная, а фазовый угол (ФЧХ) - нечетная функция частоты.

Гораздо сложнее ответить на вопрос о том, каким должен быть частотный коэффициент передачи для того, чтобы выполнялись условия физической реализуемости (8.12) и (8.14). Приведем без доказательства окончательный результат, известный под названием критерия Пэли - Винера: частотный коэффициент передачи физически реализуемой системы должен быть таким, чтобы существовал интеграл

Рассмотрим конкретный пример, иллюстрирующий свойства частотного коэффициента передачи линейной системы.

Пример 8.5. Некоторая линейная стационарная система имеет свойства идеального ФНЧ, т. е. ее частотный коэффициент передачи задается системой равенств:

Да основании выражения (8.20) импульсная характеристика такого фильтра

Симметрия графика этой функции относительно точки t = 0 свидетельствует о нереализуемости идеального фильтра нижних частот. Впрочем, этот вывод непосредственно вытекает из критерия Пэли - Винера. Действительно, интеграл (8.27) расходится для любой АЧХ, которая обращается в нуль на некотором конечном отрезке оси частот.

Несмотря на нереализуемость идеального ФНЧ, эту модель с успехом используют для приближенного описания свойств частотных фильтров, полагая, что функция содержит фазовый множитель, линейно зависящий от частоты:

Как нетрудно проверить, здесь импульсная характеристика

Параметр равный по модулю коэффициенту наклона ФЧХ, определяет задержку во времени максимума функции h(t). Ясно, что данная модель тем точнее отображает свойства реализуемой системы, чем больше значение

Рассмотрим линейную электрическую цепь, не содержащую независимых ис точников тока и напряжения. Пусть внешнее воздействие на цепь представляет со

Переходной характеристикой g (t -t 0 ) линейной цепи, не содержащей незави симых источников энергии, называется отношение реакции этой цепи на воздейст вие неединичного скачка тока или напряжения к высоте этого скачка при нулевых начальных условиях:

реходная характеристика цепи численно равна реакции цепи на воздействие единич­ ного скачка тока или напряжения. Размерность переходной характеристики равна отношению размерности отклика к размерности внешнего воздействия, поэтому переходная характеристика может иметь размерность сопротивления, проводимо сти или быть безразмерной величиной.

Пусть внешнее воздействие на цепь имеет форму бесконечно короткого им пульса бесконечно большой высоты и конечной площади А И :

и .

Реакцию цепи на это воздействие при нулевых начальных условиях обозначим

Импульсной характеристикой h (t -t 0 ) линейной цепи, не содержащей неза висимых источников энергии, называется отношение реакции этой цепи на воздей ствие бесконечно короткого импульса бесконечно большой высоты и конечной площади к площади этого импульса при нулевых начальных условиях:

⁄ и .

Как следует из выражения (6.109), импульсная характеристика цепи численно равна реакции цепи на воздействие единичного импульса (А И = 1). Размерность им пульсной характеристики равна отношению размерности отклика цепи к произве дению размерности внешнего воздействия на время.

Подобно комплексной частотной и операторной характеристикам цепи, пере ходная и импульсная характеристики устанавливают связь между внешним воздей ствием на цепь и ее реакцией, однако в отличие от комплексной частотной и опера торной характеристик аргументом переходной и импульсной характеристик явля ется время t , а не угловая ω или комплексная р частота. Так как характеристики це пи, аргументом которых является время, называются временны́ми, а аргументом которых является частота (в том числе и комплексная) - частотными характери

стиками (см. модуль 1.5), то переходная и импульсная характеристики относятся к временны́м характеристикам цепи.

Каждой паре « внешнее воздействие на цепь - реакция цепи » можно поставить в соответствие определенную комплексную частотную

Для установления связи между этими характеристиками найдем операторные изображения переходной и импульсной характеристик. Используя выражения

(6.108), (6.109), запишем

Операторные изображения реакции цепи на внеш

ние воздействия. Выражая

через операторные изображения внешних

воздействий

Аи

; получаем

0 операторные изображения переходной и импульсной характери

стик имеют особенно простой вид:

Таким образом, импульсная характеристика цепи

Это функция, изо

бражение которой по Лапласу, представляет собой операторную характеристику це

между частотными и временными характеристиками цепи. Зная, например, им пульсную характеристику можно с помощью прямого преобразования Лапла са найти соответствующую операторную характеристику цепи

Используя выражения (6.110) и теорему дифференцирования (6.51), нетрудно установить связь между переходной и импульсной характеристиками:

Следовательно, импульсная характеристика цепи равна первой производной переходной характеристики по времени. В связи с тем, что переходная характери стика цепи g (t-t 0 ) численно равна реакции цепи на воздействие единичного скачка напряжения или тока, приложенного к цепи с нулевыми начальными условиями, значения функции g (t-t 0 ) при t < t 0 равны нулю. Поэтому, строго говоря, переход ную характеристику цепи следует записывать как g (t-t 0 ) ∙ 1(t-t 0 ), а не g (t-t 0 ). За меняя в выражении (6.112) g (t-t 0 ) на g (t-t 0 ) ∙ 1(t-t 0 ) и используя соотношение (6.104), получаем

Выражение (6.113) известно под названием формулы обобщенной производ­ ной . Первое слагаемое в этом выражении представляет собой производную пере ходной характеристики при t > t 0 , а второе слагаемое содержит произведение δ функции на значение переходной характеристики в точке t = t 0 . Если при t = t 0 функ ция g (t-t 0 ) изменяется скачкообразно, то импульсная характеристика цепи содер жит δ функцию, умноженную на высоту скачка переходной характеристики в точке t = t 0 . Если функция g (t-t 0 ) не претерпевает разрыва при t = t 0 , т. е. значение переход ной характеристики в точке t = t 0 равно нулю, то выражение для обобщенной произ водной совпадает с выражением для обычной производной.

Методы определения временных характеристик

Для определения временны́х характеристик линейной цепи в общем случае не обходимо рассмотреть переходные процессы, имеющие место в данной цепи при воздействии на нее единичного скачка (единичного импульса) тока или напряже ния. Это может быть выполнено с помощью классического или операторного метода анализа переходных процессов. На практике для нахождения временных характери стик линейных цепей удобно использовать другой путь, основанный на применении соотношений, устанавливающих связь между частотными и временными характери стиками. Определение временных характеристик в этом случае начинается с состав

операторную характеристику цепи и применяя соотношения (6.110) или (6.111), оп ределяют искомые временные характеристики.

щающего цепи определенную энергию. Токи индуктивностей и напряжения емко стей при этом скачком изменяются на значение, соответствующее поступившей в цепь энергии. На втором этапе (при) действие приложенного к цепи внешне го воздействия закончилось (при этом соответствующие источники энергии вы ключены, т. е. представлены внутренними сопротивлениями), и в цепи возникают свободные процессы, протекающие за счет энергии, запасенной в реактивных эле ментах на первой стадии переходного процесса. Таким образом, импульсная харак теристика цепи, численно равная реакции на воздействие единичного импульса то ка или напряжения, характеризует свободные процессы в рассматриваемой цепи.

Пример6.7.Для цепи, схема которой приведена на рис. 3.12, а, найдем переходную и импульсную характеристики в режиме холостого хода на зажимах 2―2". Внешнее воздейст

вие на цепь ― напряжение на зажимах 1―1"

Реакция цепи ― напряжение на зажи

Операторная характеристика данной цепи, соответствующая заданной паре «внеш нее воздействие на цепь ― реакция цепи», была получена в примере 6.5:

х ⁄ .

Следовательно, операторные изображения переходной и импульсной характери стик цепи имеют вид

⁄ ;

1 ⁄ 1 ⁄ .

Используя таблицы обратного преобразования Лапласа см. приложение 1 , пере ходим от изображений искомых временных характеристик к оригиналам рис. 6.20, а, б:

Отметим, что выражение для импульсной характеристики цепи может быть полу чено и с помощью формулы 6.113 , примененной к выражению для переходной характери стики цепи g t .

Для качественного объяснения вида переходной и импульсной характеристик цепи в данном включении рис. 6.20, а, б подсоединим к зажимам 1-1" независимый источник напряжения рис. 6.20, в. Переходная характеристика данной цепи численно рав на напряжению на зажимах 2-2" при воздействии на цепь единичного скачка напряжения

1 В и нулевых начальных условиях. В начальный момент времени после коммута

ции сопротивление индуктивности бесконечно велико, поэтому при t

на выходе цепи равно напряжению на зажимах 1-1": u 2 |t 0

u 1| t 0

1 В. С течением вре

мени напряжение на индуктивности уменьшается, стремясь к нулю при t

∞ . В соответст

вии с этим переходная характеристика начинается от значения g 0

1 и стремится к нулю

Импульсная характеристика цепи численно равна напряжению на зажимах 2 - 2"

при приложении к входу цепи единичного импульса напряжения e t

Импульсной характеристикой (весовой функцией) называется реакция системы на единичный бесконечный импульс (дельта-функцию или функцию Дирака) при нулевых начальных условиях. Дельта-функция определяется равенствами

, .

Это обобщенная функция – математический объект, представляющий собой идеальный сигнал, никакое реальное устройство не способно его воспроизвести. Дельта-функцию можно рассматривать как предел прямоугольного импульса единичной площади с центром в точке при стремлении ширины импульса к нулю.

Теперь нам нужно проанализировать пределы этой суммы. Итак, мы должны использовать интегралы для правильного понимания этого типа системы. Для этого нам нужна свертка! Предположим для этой задачи, что \\ больше нуля. Попробуйте выполнить следующие две функции.

,

где – передаточная функция системы, которая является преобразованием Лапласа для. Импульсная характеристика системы с одним интегратором стремится к постоянной величине, равной статическому коэффициенту передачи системы без интегратора. Для системы с двумя интеграторами импульсная характеристика асимптотически стремится к прямой, с тремя интеграторами – к параболе и т.д.

Соответствующим дискретным сигналом является последовательность. Рассмотрим преобразование Фурье непрерывного сигнала. Аппроксимация преобразования Фурье получается из дискретного сигнала методом прямоугольников.

Когда сумма остановлена ​​в конечном ранге, мы находим.

Линейная система с конечной импульсной характеристикой


Эта система называется причинной, поскольку состояние выхода зависит только от предыдущих состояний входа. Дискретный сигнал, определяемый.

Для входного импульса линейная система выводит сигнал.

Следует отметить, что выходной сигнал является результатом свертки входного сигнала импульсной характеристикой.

8. Временной метод анализа переходных процессов в линейных электрических цепях

8.1. Переходные и импульсные характеристики электрических цепей

В основе временного метода лежит понятие переходной и импульсной характеристик цепи. Переходной характеристикой цепи называют реакцию цепи на воздействие в форме единичной функции (7.19). Обозначается переходная характеристика цепи g (t ). Импульсной характеристикой цепи называют реакцию цепи на воздействие единичной импульсной функции (d-функции) (7.21). Обозначается импульсная характеристика h (t ). Причем, g (t ) и h (t ) определяются при нулевых начальных условиях в цепи. В зависимости от типа реакции и типа воздействия (ток или напряжение) переходные и импульсные характеристики могут быть безразмерными величинами, либо имеют размерность А/В или В/А.

Эта система представляет собой фильтр с конечным импульсным откликом.


Который является дискретным преобразованием Фурье импульсной характеристики. Рассмотрим в качестве простого примера фильтр, реализующий среднее арифметическое двух последовательных значений ввода.

Использование понятий переходной и импульсной характеристик цепи позволяет свести расчет реакции цепи от действия непериодического сигнала произвольной формы к определению реакции цепи на простейшее воздействие типа единичной 1(t ) или импульсной функции d(t ), с помощью которых аппроксимируется исходный сигнал. При этом результирующая реакция линейной цепи находится (с использованием принципа наложения) как сумма реакций цепи на элементарные воздействия 1(t ) или d(t ).


Средний фильтр - фильтр нижних частот. Фазовый сдвиг линейно изменяется с частотой. Это подтверждается следующим выражением частотной характеристики . Чтобы имитировать действие этого фильтра на сигнал, рассмотрите следующий непрерывный сигнал и его выборку.

Чтобы получить отфильтрованный дискретный сигнал, достаточно выполнить свертку с импульсной характеристикой. Для линейного фазового фильтра фазовый сдвиг является линейной функцией частоты. Таким образом, частотная характеристика имеет следующий вид.

Все частоты сигнала подвергаются одному и тому же сдвигу τ при прохождении через фильтр. τ - время распространения.

Между переходной g (t ) и импульсной h (t ) характеристиками линейной пассивной цепи существует определенная связь. Ее можно установить, если представить единичную импульсную функцию через предельный переход разности двух единичных функций величины 1/t, сдвинутых друг относительно друга на время t (см. рис. 7.4):

т. е. единичная импульсная функция равна производной единичной функции. Так как рассматриваемая цепь предполагается линейной, то соотношение (8.1) сохраняется и для импульсных и переходных реакций цепи

Форма сигнала не изменяется с помощью полосовой фильтрации. Выделяя термин, содержащий фазу, частотная характеристика записывается в соответствии с выражением. После изменения переменной в сумме выводится выражение коэффициента усиления. Написан частотный отклик. Учитывая предел, получим.


Получен линейный фазовый фильтр с бесконечной импульсной характеристикой. Этот метод эквивалентен применению прямоугольного окна к коэффициентам Фурье.

Коэффициенты Фурье этой функции.

Результат может быть выражен с помощью синусовой кардинальной функции и зависит только от отношения частоты среза к частоте дискретизации.

т. е. импульсная характеристика является производной от переходной характеристики цепи.

Уравнение (8.2) справедливо для случая, когда g (0) = 0 (нулевые начальны е условия для цепи). Еслиже g (0) ¹ 0, то представив g (t ) в виде g (t ) = , где = 0, получим уравнение связи для этого случая:

Для получения частотной характеристики используется следующая функция. Здесь приведен график усиления и фазы фильтра. Можно видеть, что фаза действительно линейна в полосе пропускания, но усиление имеет очень сильные волнистости. В аттенюированной полосе имеются разрывы π фазы. Разумеется, различия в отношении желаемой передаточной функции обусловлены усечением импульсной характеристики.

Попробуем усечение окном Ханна. Волны в полосе пропускания и в аттенюированной полосе значительно уменьшены. Линейность фазы в полосе пропускания всегда обеспечивается. Если задержка τ должна оставаться фиксированной, частота дискретизации должна быть увеличена одновременно. Отбирается сигнал с шумом.

Для нахождения переходных и импульсных характеристик цепи можно использовать как классический, так и операторный методы. Сущность классического метода состоит в определении временной реакции цепи (в форме напряжения или тока в отдельных ветвях цепи) на воздействие единичной 1(t ) или импульсной d(t ) функции. Обычно классическим методом удобно определять переходную характеристику g (t ), а импульсную характеристику h (t ) находить с помощью уравнений связи (8.2), (8.3) или операторным методом .

Пример. Найдем классическим методом переходную характеристику по напряжению для цепи, изображенной на рис. 8.1. Численно g u (t ) для данной цепи совпадает с напряжением на емкости при подключении ее в момент t = 0 к источнику напряжения U 1 = l В:

Закон изменения напряжения u C (t ) определяется уравнением (6.27), где необходимо положить U = l В:

При нахождении характеристик g (t ) и h (t ) операторным методом пользуются изображениями функций 1(t ), d(t ) и методикой расчета переходных процессов, изложенных в гл. 7.

Пример. Определим операторным методом переходную характеристику g u (t ) -цепи (см. рис. 8.1). Для данной цепи в соответствии с законом Ома в операторной форме (7.35) можем записать:

Окончательно получаем

Отсюда по теореме разложения (7.31) находим

т. е. то же значение, что и полученное классическим методом.

Следует отметить, что величина I (р ) в уравнении (8.4) численно равна изображению переходной проводимости. Аналогичное изображение импульсной характеристики численно равно операторной проводимости цепи

Например, для -цепи (см. рис. 8.1) имеем:

Применив к Y (p ) теорему разложения (7.30), получим:

Следует отметить, что формула (8.5) определяет свободную составляющую реакции цепи при единичном импульсном воздействии. В общем случае в реакции цепи, кроме экспоненциальных составляющих свободного режима при t > 0 присутствует импульсное слагаемое, отображающее воздействие при t = 0 единичного импульса. Действительно, если учесть, что для -контура (см. рис. 8.1) переходная характеристика по току при U = 1(t ) согласно (6.28) будет

то после дифференцирования (8.6) согласно (8.2) получаем импульсную характеристику -цепи h i (t ) в виде

т. е. реакция h i (t ) содержит два слагаемых - импульсное и экспоненциальное.

Физический смысл первого слагаемого в (8.7) означает, что при t = 0 в результате воздействия на цепь импульсного напряжения d(t ) зарядный ток мгновенно достигает бесконечно большого значения, при этом за время от 0 – до 0 + элементу емкости передается конечный заряд и она скачком заряжается до напряжения I /RC . Второе слагаемое определяет свободный процесс в цепи при t > 0 и обусловлено разрядом конденсатора через короткозамкнутый вход (так как при t > 0 d(t ) = 0, что равносильно КЗ входа) с постоянной времени t = RC . Из этого следует, что при d(t )-импульсном воздействии на -цепь нарушается непрерывность заряда на емкости (второй закон коммутации). Аналогично нарушается и условие непрерывности тока в индуктивности (первый закон коммутации), если к цепи, содержащей элемент индуктивности воздействовать напряжением в виде d(t ).

В табл. 8.1 сведены значения переходной и импульсных характеристик по току и напряжению для некоторых цепей первого и второго порядка.

8.2. Интеграл Дюамеля

Интеграл Дюамеля может быть получен, если аппроксимировать приложенное воздействие f 1 (t ) с помощью единичных функций, сдвинутых относительно друг друга на время Dt (рис. 8.2).

Реакция цепи на каждое ступенчатое воздействие определится как

Результирующая реакция цепи на систему ступенчатых воздействий найдется, исходя из принципа наложения:


где п - число аппроксимирующих участков, на которые разбит интервал 0 ... t . Домножив и разделив выражение, стоящее под знаком суммы, на Dt и перейдя к пределу с учетом того получим одну из форм интеграла Дюамеля:


Уравнение (8.8) отражает реакцию цепи на заданное воздействие, поскольку аппроксимирующая функция стремится к исходной.

Вторая форма интеграла Дюамеля может быть получена с помощью теоремы свертки (см.): , б), затем определяется классическим или операторным методом реакция цепи при включении рассматриваемой ветви к активному двухполюснику (рис. 8.4, в ). Результирующая реакция находится как сумма реакций: .

8.3. Интеграл наложения

При нахождении реакции цепи с помощью интеграла наложения используется импульсная характеристика цепи h (t ). Для получения общего выражения интеграла наложения аппроксимируем входной сигнал f 1 (t ) с помощью системы единичных импульсов длительности d t, амплитуды f 1 (t) и площади f 1 (t)d t (рис. 8.5). Выходная реакция цепи на каждый из единичных импульсов

Используя принцип наложения, нетрудно получить суммарную реакцию цепи на систему единичных импульсов:

Интеграл (8.12) носит название интеграла наложения . Между интегралами наложения и Дюамеля существует простая связь, определяемая связью (8.3) между импульсной h (t ) и переходной g (t ) характеристиками цепи. Подставив, например, значение h (t ) из (8.3) в формулу (8.12) с учетом фильтрующего свойства d-функции (7.23), получим интеграл Дюамеля в форме (8.11).

Пример. На вход -цепи (см. рис. 8.1) подается скачок напряжения U 1 . Определить реакцию цепи на выходе с использованием интегралов наложения (8.12) и Дюамеля (8.11).

Импульсная характеристика данной цепи равна (см. табл. 8.1): h u (t ) = = (1/RC)e –t / RC . Тогда, подставляя h u (t – t) = (1/RC)e –( t– t)/ RC в формулу (8.12), получаем:

Аналогично результат получаем при использовании переходной функции данной цепи и интеграла Дюамеля (8.11):

Если начало воздействия не совпадает с началом отсчета времени, то интеграл (8.12) принимает вид

Интегралы наложения (8.12) и (8.13) представляютсобойсвертку входного сигнала с импульсной характеристикой цепи и широко применяются в теории электрических цепей и теории передачи сигналов. Ее физический смысл заключается в том, что вход ной сигнал f 1 (t) как бы взвешивается с помощью функции h (t- t): чем медленнее убывает со временем h (t ), тем большее влияние на выходной сигнал оказывает более удаленные от момента наблюдения значение входного воздействия.


На рис. 8.6, а показан сигнал f 1 (t) и импульсная характеристика h (t- t), являющаяся зеркальным отображением h (t), а на рис. 8.6, б приведена свертка сигнала f 1 (t) с функцией h (t- t) (заштрихованная часть), численно равная реакции цепи в момент t .

Из рис. 8.6 видно, что отклик на выходе цепи не может быть короче суммарной длительности сигнала t 1 и импульсной характеристики t h . Таким образом, для того чтобы выходной сигнал не искажался импульсная характеристика цепи должна стремиться к d-функции.

Очевидно также, что в физически реализуемой цепи реакция не может возникнуть раньше воздействия. А это означает, что импульсная характеристика физически реализуемой цепи должна удовлетворять условию

Для физически реализуемой устойчивой цепи кроме того должно выполняться условие абсолютной интегрируемости импульсной характеристики:

Если входное воздействие имеет сложную форму или задается графически, то для вычисления реакции цепи вместо интеграла свертки (8.12) применяют графоаналитические способы.

Вопросы и задания для самопроверки

1. Дать определения переходной и импульсной характеристик цепи.

2. Указать связь между импульсной и переходной характеристиками.

3. Как определить переходную и импульсную характеристику цепи?

4. В чем отличие переходных характеристик, объяснить их физический смысл.

5. Как определить, какую из четырех разновидностей переходных или импульсных характеристик необходимо применить в каждом конкретном случае при расчете реакции цепи?

6. В чем заключается сущность расчета переходных процессов с использованием g (t ) и h (t )?

7. Как определить реакцию цепи, если воздействие имеет сложную форму?

8. Каким условиям должна удовлетворять цепь при использовании интеграла Дюамеля?

9. Приведите другую форму интеграла наложения, отличную от (8.12).

10. Расчет реакции цепи с использованием интегралов Дюамеля и наложения приводит к одинаковым результатам или разным?

11. Определить переходную проводимость цепи, образованной сопротивлением и индуктивностью, включенными последовательно.

12. Определить цепи, образованной сопротивлением и емкостью, включенными последовательно.

Ответ: .

13. Получить третью форму интеграла Дюамеля (8.10) из уравнения свертки (8.10).

3. Импульсные характеристики электрических цепей

Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на импульсное воздействие;

– площадь импульса воздействия.

По известной импульсной характеристике цепи можно найти реакцию цепи на заданное воздействие: .

В качестве функции воздействия часто используется единичное импульсное воздействие называемое также дельта-функцией или функцией Дирака.

Дельта-функция – это функция всюду равная нулю, кроме , а площадь ее равна единице ():

.

К понятию дельта-функция можно прийти, рассматривая предел прямоугольного импульса высотой и длительностью , когда (рис. 3):

Установим связь между передаточной функцией цепи и ее импульсной характеристикой, для чего используем операторный метод.

По определению:

Если воздействие (оригинал) рассматривать для наиболее общего случая в виде произведения площади импульса на дельта-функцию, т. е. в виде , то изображение этого воздействия согласно таблицы соответствий имеет вид:

.

Тогда с другой стороны, отношение преобразованной по Лапласу реакции цепи к величине площади импульса воздействия, представляет собой операторную импульсную характеристику цепи:

.

Следовательно, .

Для нахождения импульсной характеристики цепи необходимо применить обратное преобразование Лапласа:

, т. е. фактически .

Обобщая формулы, получим связь между операторной передаточной функцией цепи и операторными переходной и импульсной характеристиками цепи:

Таким образом, зная одну из характеристик цепи, можно определить любые другие.

Произведем тождественное преобразование равенства, прибавив к средней части .

Тогда будем иметь .

Поскольку представляет собой изображение производной переходной характеристики, то исходное равенство можно переписать в виде:

Переходя в область оригиналов, получаем формулу, позволяющую определить импульсную характеристику цепи по известной ее переходной характеристике:

Если , то .

Обратное соотношение между указанными характеристиками имеет вид:

.

По передаточной функции легко установить наличие в составе функции слагаемого .

Если степени числителя и знаменателя одинаковы, то рассматриваемое слагаемое будет присутствовать. Если же функция является правильной дробью, то этого слагаемого не будет.

Пример: определить импульсные характеристики для напряжений и в последовательной -цепи, показанной на рисунке 4.

Определим :

По таблице соответствий перейдем к оригиналу:

.

График этой функции показан на рисунке 5.

Рис. 5

Передаточная функция :

Согласно таблице соответствий имеем:

.

График полученной функции показан на рисунке 6.

Укажем, что такие же выражения можно было получить с помощью соотношений, устанавливающих связь между и.

Импульсная характеристика по физическому смыслу отражает собой процесс свободных колебаний и по этой причине можно утверждать, что в реальных цепях всегда должно выполняться условие:

4. Интегралы свертки (наложения)

Рассмотрим порядок определения реакции линейной электрической цепи на сложное воздействие, если известна импульсная характеристика этой цепи . Будем считать, что воздействие представляет собой кусочно-непрерывную функцию , показанную на рисунке 7.

Пусть требуется найти значение реакции в некоторый момент времени . Решая эту задачу, представим воздействие в виде суммы прямоугольных импульсов бесконечно малой длительности, один из которых, соответствующий моменту времени , показан на рисунке 7. Этот импульс характеризуется длительностью и высотой .

Из ранее рассмотренного материала известно, что реакцию цепи на короткий импульс можно считать равной произведению импульсной характеристики цепи на площадь импульсного воздействия. Следовательно, бесконечно малая составляющая реакции, обусловленная этим импульсным воздействием, в момент времени будет равной:

поскольку площадь импульса равна , а от момента его приложения до момента наблюдения проходит время .

Используя принцип наложения, полную реакцию цепи можно определить как сумму бесконечно большого числа бесконечно малых составляющих , вызванных последовательностью бесконечно малых по площади импульсных воздействий, предшествующих моменту времени .

Таким образом:

.

Эта формула верна для любых значений , поэтому обычно переменную обозначают просто . Тогда:

.

Полученное соотношение называют интегралом свертки или интегралом наложения. Функцию, которая находится в результате вычисления интеграла свертки, называют сверткой и .

Можно найти другую форму интеграла свертки, если в полученном выражении для осуществить замену переменных:

.

Пример: найти напряжение на емкости последовательной -цепи (рис. 8), если на входе действует экспоненциальный импульс вида:

цепи связан: с изменением энергетического состояния... (+0),. Uc(-0) = Uc(+0). 3. Переходная характеристика электрической цепи это: Отклик на единичное ступенчатое...

  • Исследование цепи второго порядка. Поиск входной и предаточной характеристики

    Курсовая работа >> Коммуникации и связь

    3. Переходная и импульсная характеристики цепи Лаплас образ переходной характеристики имеет вид. Для получения переходной характеристики во... А., Золотницкий В. М., Чернышев Э. П. Основы теории электрических цепей .-СПб.:Лань, 2004. 2. Дьяконов В. П. MATLAB ...

  • Основные положения теории переходных процессов

    Реферат >> Физика

    Лапласа; – временной, использующий переходные и импульсные характеристики ; – частотный, базирующийся на... классического метода анализа переходных колебаний в электрических цепях Переходные процессы в электрических цепях описываются уравнениями, ...