К инструментальным средствам относятся программы. Инструментальные системы. Вопросы для самопроверки

К инструментальному программному обеспечению относятся средства разработки программного обеспечения. Это системы программирования, включающие программные средства, необходимые для автоматического построения машинного кода. Они являются инструментами для программистов- профессионалов и позволяют разрабатывать программы на различных языках программирования.

В состав средств разработки программного обеспечения входят следующие программы:

  • ассемблеры – компьютерные программы, осуществляющие преобразование программы в форме исходного текста на языке ассемблера в машинные команды в виде объектного кода;
  • трансляторы – программы, выполняющие трансляцию программы;
  • компиляторы – программы, переводящие текст программы на языке высокого уровня в эквивалентную программу на машинном языке;
  • интерпретаторы – программы, анализирующие команды или операторы программы и тут же выполняющие их;
  • компоновщики (редакторы связей) – программы, которые производят компоновку – принимают на вход один или несколько объектных модулей и собирают по ним исполнимый модуль;
  • препроцессоры исходных текстов – это компьютерные программы, принимающие данные на входе, и выдающие данные, предназначенные для входа другой программы, например такой, как компилятор;
  • отладчики (debugger) – программы, являющиеся модулем среды разработки или отдельным приложением, предназначенным для поиска ошибок в программе;
  • специализированные редакторы исходных текстов – программы, необходимые для создания и редактирования исходного кода программ. Специализированный редактор исходных текстов может быть отдельным приложением или встроенным в интегрированную среду разработки и др.

Языки, представляющие алгоритмы в виде последовательности читаемых (не двоично-кодированных) команд, называются алгоритмическими языками. Алгоритмические языки подразделяются на машинно-ориентированные, процедурно-ориентированные и проблемно-ориентированные.

Машинно-ориентированные языки относятся к языкам программирования низкого уровня – программирование на них наиболее трудоемко, но позволяет создавать оптимальные программы, максимально учитывающие функционально-структурные особенности конкретного компьютера. Программы на этих языках, при прочих равных условиях, будут более короткими и быстрыми. Кроме того, знание основ программирования на машинно-ориентированном языке позволяет специалисту подробнейшим образом разобраться с архитектурой компьютера. Большинство команд машинно-ориентированных языков при трансляции (переводе) на машинный (двоичный) язык генерируют одну машинную команду.

Процедурно-ориентированные и проблемно-ориентированные языки относятся к языкам высокого уровня, использующим макрокоманды. Макрокоманда при трансляции генерирует много машинных команд (для процедурноориентированного языка это соотношение в среднем "1 к десяткам машинных команд", а для проблемно-ориентированного – "1 к сотням машинных команд". Процедурноориентированные языки программирования являются самыми используемыми (Basic, Visual Basic, Pascal, Borland Delphi, С и др.). В этом случае программист должен описывать всю процедуру решения задачи, тогда как проблемно-ориентированные языки (их называют также непроцедурными) позволяют лишь формально идентифицировать проблему и указать состав, структуры представления и форматы входной и выходной информации для задачи.

При выполнении инструкций программ компьютеру необходимо преобразовать удобные для человеческого восприятия операторы, написанные на каком-либо языке программирования, в форму, попятную для компьютера. Инструментальное программное обеспечение имеет специальные программы, транслирующие (translate) текст программ, написанных на различных языках программирования, в машинные коды, которые затем выполняются компьютером. Этот вид программного обеспечения называется компилятором или интерпретатором. Текст программы, написанной на языке программирования высокого уровня, до того как быть преобразованным в машинные коды, называется исходным кодом (source code). Компилятор (compiler) преобразует исходный код в машинные коды, называемые объектным кодом (object code) – программой на выходном языке транслятора. Перед выполнением происходит процесс редактирования связей (linkage editing), заключающийся в том, что модули выходной программы объединяются с другими модулями объектного кода, содержащими, например, данные. Результирующий загрузочный модуль – это команды, непосредственно выполняемые компьютером. Некоторые языки программирования содержат не компилятор, а интерпретатор (interpreter), который преобразует каждое отдельное выражение исходного кода в машинные коды и сразу выполняет их. Интерпретатор удобен на этапе отладки программы, так как обеспечивает быструю обратную связь при обнаружении ошибки в исходном коде. Основы программирования на языке высокого уровня Visual Basic изложены в гл. 12 настоящего учебника.

К инструментальному ПО относят также некоторые системы управления базами данных (СУБД). СУБД – это специализированный комплекс программ, предназначенный для организации и ведения баз данных. Так как системы управления базами данных не являются обязательным компонентом вычислительной системы, их не относят к системному программному обеспечению. А так как отдельные СУБД осуществляют лишь служебную функцию при работе других видов программ (веб-серверы, серверы приложений), их не всегда можно отнести к прикладному программному обеспечению. По этим причинам их часто относят к инструментальному программному обеспечению.

Основные функции таких СУБД:

  • управление данными во внешней памяти (на дисках);
  • управление данными в оперативной памяти с использованием дискового кэша;
  • фиксация изменений в специальных журналах, резервное копирование и восстановление базы данных после сбоев;
  • поддержка языков БД (язык определения данных, язык манипулирования данными).

Теоретические основы СУБД описаны выше (параграф 3.2), а практическое применение описано в гл. 10.

Инструмента́льное програ́ммное обеспе́чение - программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ, в отличие от прикладного и системного программного обеспечения.

Инструментальный уровень (трансляторы и компиляторы языков программирования, системы программирования), обеспечивают создание новых программ для персонального компьютера.

Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

Языки программирования подразделяются на низкоуровневые и высокоуровневые языки.

Низкоуровневый язык программирования - язык программирования, близкий к программированию непосредственно в машинных кодах.

Как правило, использует особенности конкретного семейства процессоров. Общеизвестный пример низкоуровнего языка - язык ассемблера .

Высокоуровневый язык программирования - язык программирования, разработанный для быстроты и удобства использования программистом. Слово «высокоуровневый» здесь означает, что язык предназначен для решения абстрактных высокоуровневых задач и оперирует не инструкциями к оборудованию, а логическими понятиями и абстракцией данных. Это позволяет быстрее программировать сложные задачи и обеспечивает относительную независимость от оборудования. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и оборудованием, в то время как их исходный код остаётся, в большей части, неизменным.

Такого рода оторванность высокоуровневых языков от аппаратной реализации компьютера помимо множества плюсов имеет и минусы. В частности, она не позволяет создавать простые и точные инструкции к используемому оборудованию. Программы написанные на языках высокого уровня, проще для понимания программистом, но гораздо менее эффективны, чем их аналоги, создаваемые при помощи низкоуровневых языков. Одним из следствий этого стало добавление поддержки того или иного языка низкого уровня (язык ассемблера) в большинство современных профессиональных высокоуровневых языков программирования.

Наиболее распространёнными языками подобного типа являются C++ , Visual Basic , Java , Python , Ruby , Perl , Delphi , PHP .


Языки программирования также можно разделить на компилируемые и интерпретируемые .

Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполняемый файл, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит программу с языка высокого уровня на низкоуровневый язык, понятный процессору.

Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) её текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера - это интерпретатор машинного кода.

Кратко говоря, компилятор переводит программу на машинный язык сразу и целиком, создавая при этом отдельную программу, а интерпретатор переводит на машинный язык прямо во время исполнения программы.

Разделение на компилируемые и интерпретируемые языки является несколько условным. Так, для любого традиционно компилируемого языка, как, например, Паскаль , можно написать интерпретатор. Кроме того, большинство современных «чистых» интерпретаторов не исполняют конструкции языка непосредственно, а компилируют их в некоторое высокоуровневое промежуточное представление (например, с разыменованием переменных и раскрытием макросов).

Для любого интерпретируемого языка можно создать компилятор - например, язык Лисп , изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.

Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем при каждом изменении текста программы требуется ее перекомпиляция, что создает трудности при разработке. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.

Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями, кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий. Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без дополнительной программы-интерпретатора.

Некоторые языки, например, Java и C# , находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код . Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету» (Just-in-time compilation ). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine ), для C# - Common Language Runtime .

Классы языков программирования. Условно, языки программирования можно разделить на следующие классы (рис. 2.).

В языках функционального программирования основными конструктивными элементами являются функции. Тексты программ на функциональных языках программирования описывают «как решить задачу», но не предписывают последовательность действий для решения.

В качестве основных свойств функциональных языков программирования обычно рассматриваются следующие:

· краткость и простота;

· строгая типизация;

· модульность;

· функции - объекты вычисления;

· чистота (отсутствие побочных эффектов);

· отложенные (ленивые) вычисления.


Рис. 2. Классы языков программирования

Примеры языков функционального программирования: Лисп, Haskell, Clean, ML и др.

Процедурное программирование - это парадигма программирования, основанная на концепции вызова процедуры . Процедуры, также известны как подпрограммы, методы, или функции (это не математические функции, но функции, подобные тем, которые используются в функциональном программировании). Процедуры просто содержат последовательность шагов для выполнения. В ходе выполнения программы любая процедура может быть вызвана из любой точки, включая саму данную процедуру.

Примеры процедурных языков программирования: Ада, Бейсик, Си, Си++, Паскаль, Visual Basic, Dilphi и др.

Язык описания интерфейсов или IDL (англ. Interface Description Language ) - чисто описательный компьютерный язык, синтаксически похожий на C++.

Примеры языков описания интерфейсов: CORBA IDL (разработан OMG для описания интерфейсов распределённых объектов - названий методов и типов переменных-аргументов), COM IDL (аналогичная CORBA IDL разработка Microsoft, созданная для описания интерфейсов между модулями COM).

Объектно-ориентированный язык программирования (ОО язык) - язык, благоприятствующий объектно-ориентированному программированию. В современных ОО языках используются методы:

Наследование . Создание нового класса объектов путём добавления новых элементов (методов). В данный момент ОО языки позволяют выполнять множественное наследование, т.е. объединять в одном классе возможности нескольких других классов.

Инкапсуляция . Сокрытие данных, которое (при грамотной реализации) позволяет вносить изменения в части программы безболезненно для других её частей. Что существенно упрощает сопровождение и модернизацию программного обеспечения.

Полиморфизм . При наследовании некоторые части (методы) родительского класса заменяются новыми, реализующими специфические для данного потомка действия. Таким образом, интерфейс классов остаётся прежним, а реализация методов с одинаковым названием и набором параметров различается.

Типизация . Позволяет устранить многие ошибки на момент компиляции, операции проводятся только над объектами подходящего типа.

Примеры ОО-языков программирования: Си++, Delphi (Object Pascal), С#, Java и др.

Логическое программирование - парадигма программирования, а также раздел дискретной математики изучающий методы и возможности этой парадигмы, основанная на выводе новых фактов из данных фактов согласно заданным логическим правилам. Логическое программирование основано на теории математической логики. Самым известным языком логического программирования является Пролог , являющийся по своей сути универсальной машиной вывода, работающей в предположении замкнутости мира фактов.

Скриптовый язык (англ. scripting language , также называют язык сценариев ) - язык программирования, разработанный для записи «сценариев», последовательностей операций, которые пользователь может выполнять на компьютере. Простые скриптовые языки раньше часто называли языками пакетной обработки (batch languages ). Сценарии всегда интерпретируются, а не компилируются.

В прикладной программе, сценарий (скрипт ) - это программа, которая автоматизирует некоторую задачу, которую без сценария пользователь делал бы вручную, используя интерфейс программы.

Примеры скриптовых языков программирования: VBA (Visual Basic Application), AutoLISP, 3DMAX Script, JCL, JavaScript и др.

В настоящее время, широкое использование компьютерных систем с кластерными и GRID-архитектурами поставило задачу создания высокоуровневых, мощных и лёгких для использования языков программирования, которые бы позволили создавать сложные, но в то же время быстрые приложения, эффективно использующие параллельные вычисления . Одним из таких языков в настоящее время является MC# (высокоуровневый объектно-ориентированный язык программирования для платформы.NET, поддерживающий создание программ, работающих в распределённой среде с асинхронными вызовами).

Вопросы для самопроверки:

1. Программное обеспечение.

2. Базовый уровень.

3. Системный уровень программного обеспечения.

4. Служебный уровень программного обеспечения.

5. Прикладной уровень программного обеспечения.

6. Что называется драйверами устройств?

7. Что называется утилитами?

8. Дайте определение языка программирования.

9. Что такое интерпретатор?

10. Что такое компилятор?

11. Приведите примеры языков программирования низкого и высокого уровней, в чём их отличие?

12. Какие классы языков программирования можно выделить? Приведите примеры для каждого класса.

13. Назовите основные свойства функциональных языков программирования

14. Назовите какие методы используются в современных объектно-ориентированных языках программирования.

15. Что такое сценарий (скрипт)?

Язык программирования можно определить как формальную знаковую систему, предназначенную для записи программ, которые задают алгоритм в форме, понятной для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить, на какие события будет реагировать компьютер , как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более восьми с половиной тысяч языков программирования . Каждый год их число пополняется новыми языками. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования. Современные прикладные и системные программы , в том числе операционные системы и системы программирования, в основном разрабатываются на алгоритмических языках или языках высокого уровня, которые обеспечивают удобство и высокую производительность работы программиста.

История развития языков программирования начинается с машинных языков. Программы для первых компьютеров разрабатывались в машинных кодах, а основными носителями информации были перфокарты и перфоленты. Программисты обязаны были знать архитектуру машины досконально. Программы были достаточно простыми, что обусловливалось, во-первых, весьма ограниченными возможностями этих машин, вовторых, большой сложностью разработки и, главное, отладки программ непосредственно на машинном языке.

Вместе с тем такой способ разработки обеспечивал программисту просто неограниченные возможности работы с компьютером. Становилось возможным использование таких хитроумных алгоритмов и способов организации программ, которые не используют (а некоторые и не знают) многие современные программисты. Например, могла применяться такая возможность, как самомодифицирующийся код. Знание двоичного представления команд позволяло иногда не хранить некоторые данные отдельно, а встраивать их в код как команды. И это далеко не полный список приемов, владение хотя бы одним из которых сейчас сразу же продвигает программиста до уровня экстра-класса .

С развитием аппаратного обеспечения компьютеров увеличивалась скорость обработки и емкость памяти . Это привело к изменениям в языках программирования – они стали проще и понятнее для людей. Языки программирования в своем развитии прошли практически те же стадии, что и сами компьютеры. Диаграмма на рис.4.1 показывает, как происходило развитие языков программирования вместе с поколениями компьютеров за последние 50 лет. Основная тенденция – увеличение простоты взаимодействия пользователя с аппаратным и программным обеспечением компьютеров.


Рис. 4.1.

Первым значительным шагом был переход к языку ассемблера ( assembly language , или assembler ). Не очень заметный, казалось бы, шаг – переход к символическому кодированию машинных команд – имел на самом деле огромное значение . Программисту не надо было больше вникать в хитроумные способы кодирования команд на аппаратном уровне. Более того, зачастую одинаковые по сути команды кодировались различным образом в зависимости от своих параметров.

Известный пример из мира современных компьютеров – кодирование инструкции mov в процессорах Intel. Существует несколько совершенно поразному кодируемых вариантов команды. Выбор того или иного варианта зависит от операндов, хотя суть выполняемой операции неизменна: поместить содержимое (или значение ) второго операнда в первый. Появилась также возможность использования макросов и меток, что также упрощало создание, модификацию и отладку программ. Появилось даже некое подобие переносимости – существовала возможность разработки целого семейства машин со сходной системой команд и некоего общего ассемблера для них, при этом не было нужды обеспечивать двоичную совместимость.

Вместе с тем, переход к новому языку таил в себе и некоторые отрицательные (на первый взгляд) стороны. Становилось почти невозможным использование всяческих хитроумных приемов, подобных упомянутым выше. Кроме того, впервые в истории развития программирования появились два представления программы: в исходных текстах и в откомпилированном виде. Сначала, пока ассемблеры только транслировали мнемонические коды в машинные, одно легко переводилось в другое и обратно, но затем, по мере появления таких возможностей, как метки и макросы, дизассемблирование (перевод из машинного кода в ассемблер ) становилось все более и более трудным делом .

К концу ассемблерной эры возможность автоматической трансляции в обе стороны была утеряна окончательно. В связи с этим было разработано большое количество специальных программ- дизассемблеров , осуществляющих обратное преобразования, однако в большинстве случаев они с трудом могут разделить код и данные. Кроме того, вся логическая информация (имена переменных, меток и т.п.) теряется безвозвратно. В случае же задачи о декомпиляции языков высокого уровня примеры удовлетворительного решения проблемы и вовсе единичны.

В 1954 году в корпорации IBM группой разработчиков во главе с Джоном Бэкусом (John Backus) был создан язык программирования Fortran. Значение этого события трудно переоценить. Это первый язык программирования высокого уровня. Впервые программист мог по -настоящему абстрагироваться от особенностей машинной архитектуры. Ключевой идеей, отличающей новый язык от ассемблера, была концепция подпрограмм.

Напомним, что это современные компьютеры поддерживают подпрограммы на аппаратном уровне, предоставляя соответствующие команды и структуры данных ( стек ) прямо на уровне ассемблера, а в 1954 же году это было совершенно не так. Поэтому компиляция Fortran"а была процессом отнюдь не тривиальным. Кроме того, синтаксическая структура языка была достаточно сложна для машинной обработки, в первую очередь , из-за того, что пробелы как синтаксические единицы вообще не использовались. Это порождало массу возможностей для скрытых ошибок.

Язык Фортран использовался (и используется сейчас) для научных вычислений. Он страдает от отсутствия многих привычных языковых конструкций и атрибутов, компилятор практически никак не проверяет синтаксически правильную программу с точки зрения семантической корректности (соответствие типов и др.). В нем нет поддержки современных способов структурирования кода и данных. Это осознавали и сами разработчики. По признанию самого Бэкуса, перед ними стояла задача скорее разработки компилятора, чем языка. Понимание самостоятельного значения языков программирования пришло позже.

Появление Фортрана было встречено еще большей критикой, чем внедрение ассемблера. Программистов пугало снижение эффективности программ за счет использования промежуточного звена в виде компилятора. И эти опасения имели под собой основания: действительно, хороший программист, скорее всего, при решении какой-либо небольшой задачи вручную напишет код, работающий быстрее, чем код, полученный как результат компиляции. Через некоторое время пришло понимание того, что реализация больших проектов невозможна без применения языков высокого уровня. Мощность вычислительных машин росла, и с тем падением эффективности, которое раньше считалось угрожающим, стало возможным смириться. Преимущества же языков высокого уровня стали настолько очевидными, что побудили разработчиков к созданию новых языков, все более и более совершенных.

Вторым в истории высокоуровневым языком программирования стал Lisp . Он использовался и по сей день используется в основном для разрешения сложных задач. Датой рождения Лиспа был 1958 год, известность к нему пришла чуть позже. В 1960 в журнале Communications of the ACM вышла статья Джона Маккарти (автора Лиспа) с подробным описанием нового языка. Он стал отцом не только Лиспа, но и основоположником всего функционального программирования. Язык Lisp – язык для обработки списков. Получил достаточно широкое распространение в системах искусственного интеллекта. Имеет несколько потомков: Planner (1967), Scheme (1975), Common Lisp (1984). Многие его черты были унаследованы современными языками функционального программирования.

В 1960 году в США был создан язык программирования Cobol. Он был рассчитан специально для создания коммерческих приложений. На Коболе написаны тысячи прикладных коммерческих систем. Отличительной особенностью языка является возможность эффективной работы с большими массивами данных, что характерно именно для коммерческих приложений. Популярность Кобола столь высока, что даже сейчас, при всех его недостатках ( по структуре и замыслу Кобол во многом напоминает Фортран), появляются новые его диалекты и реализации. Так, недавно появилась реализация Кобола, совместимая с Microsoft . NET , что потребовало, вероятно, внесения в язык некоторых черт объектно-ориентированного языка.

В 1960 году командой во главе с Петером Науром (Peter Naur) был создан язык программирования Algol . Этот язык дал начало целому семейству алголоподобных языков (важнейший представитель – Pascal ). В 1968 году появилась новая версия языка – Algol 68. Она не нашла столь широкого практического применения, как первая версия, но была весьма популярна в кругах теоретиков. Язык был достаточно интересен, так как обладал многими уникальными на тот момент характеристиками.

К середине 60-х годов прошлого века в США резко возросла потребность в обучении программированию не только специалистов в области вычислительной техники, но и широкого круга пользователей. Это было связано с резким увеличением количества компьютеров в бизнесе. Два профессора Дартмутского колледжа – Томас Курт и Джон Кемени – для обучения студентов программированию создали язык Бейсик ( BASIC ). Свое название язык получил по первым буквам английских слов " Beginner "s All-purpose Symbolic Instruction Code" – универсальный код символических инструкций для начинающих.

Есть и другой перевод – базовый, основной, что хорошо соответствовало сложившемуся положению дел в программировании для бизнеса. Язык предназначался для обучения программированию и получил широкое распространение в виде различных диалектов, прежде всего, как язык для домашних микрокомпьютеров. Впоследствии большая часть критики этого языка строилась на том, что после Basic "а нормально программировать человек не может, и исправить это уже не удастся. Как бы то ни было, в 1963 г. язык был создан и получил имя Dartmouth BASIC .

Настоящую популярность этот язык получил в 1975 году. Тогда Microsoft (в то время только два человека – Билл Гейтс и Пол Аллен) написали интерпретатор бейсика для компьютеров Altair 8800, названный Altair BASIC . Язык стремительно разветвился на множество диалектов. Например, Apple II базировался на одной из его версий, а для операционной системы CP/M был написан BASIC -80. Заметим, что второе (или даже третье) дыхание развитию Basic дал опять же Microsoft. Произошло это в начале 90-х годов прошлого столетия, когда был выпущен Visual Basic , уже совсем не похожий на своего предка.

В 1964 году же корпорация IBM создала язык PL/1 , который был призван заменить Cobol и Fortran в большинстве приложений. Язык обладал исключительным богатством синтаксических конструкций. В нем впервые появилась обработка исключительных ситуаций и поддержка параллелизма. Надо заметить, что синтаксическая структура языка была крайне сложной. Пробелы уже использовались как синтаксические разделители, но ключевые слова не были зарезервированы. В силу таких особенностей разработка компилятора для PL/1 была исключительно сложным делом. Язык так и не стал популярен вне мира IBM , однако широко использовался в бывшем Советском Союзе и странах социалистического содружества. Причина этого заключается в производстве этими странами ряда программно совместимых моделей компьютеров ЕС ЭВМ, которые практически были скопированы с компьютеров IBM /360.

Создание каждого из вышеупомянутых языков (за исключением, может быть, Algol "а) было вызвано некоторыми практическими требованиями. Эти языки послужили фундаментом для более поздних разработок. Все они представляют одну и ту же парадигму программирования. Следующие языки пошли существенно дальше в своем развитии, в сторону более глубокого абстрагирования.

В 1970 году Никлаус Вирт создал язык программирования Pascal . Язык замечателен тем, что это первый широко распространенный язык для структурного программирования (первым был Алгол , но он не получил столь широкого распространения). Впервые оператор безусловного перехода перестал играть основополагающую роль при управлении порядком выполнения операторов. В этом языке также внедрена строгая проверка типов, что позволило выявлять многие ошибки на этапе компиляции.

Отрицательной чертой языка было отсутствие в нем средств для разбиения программы на модули. Вирт осознавал это и разработал язык Modula-2 (1978), в котором идея модуля стала одной из ключевых концепций языка. В 1988 году появился язык Modula-3, в котором были добавлены объектно-ориентированные черты. Логическим продолжением Pascal и Modula являются язык Oberon и Oberon -2. Они характеризуются движением в сторону объектной и компонентной ориентированности. В этом плане интересно рассмотреть С-подобные языки.

В 1972 году Керниганом и Ритчи был создан язык программирования C . Он создавался как язык для разработки операционной системы UNIX . Язык С часто называют "переносимым ассемблером", имея в виду то, что он позволяет работать с данными практически так же эффективно, как на ассемблере, предоставляя при этом структурированные управляющие конструкции и абстракции высокого уровня (структуры и массивы). Именно с этим связана его огромная популярность и поныне. И именно это является его ахиллесовой пятой. Компилятор C очень слабо контролирует типы, поэтому очень легко написать внешне совершенно правильную, но логически ошибочную программу.

В 1986 году Бьярн Страуструп создал первую версию языка C++, добавив в язык C объектно-ориентированные черты, взятые из Simula (см. ниже), и исправив некоторые ошибки и неудачные решения языка. C++ продолжает совершенствоваться и в настоящее время, так в 1998 году вышла новая (третья) версия стандарта, содержащая в себе некоторые довольно существенные изменения. Язык стал основой для разработки современных больших и сложных проектов. У него имеются, однако же, и слабые стороны, вытекающие из требований эффективности.

В 1995 году в корпорации Sun Microsystems Кеном Арнольдом и Джеймсом Гослингом был создан язык Java . Он наследовал синтаксис C и C++ и был избавлен от некоторых неприятных черт последнего. Отличительной особенностью языка является компиляция в код некоей абстрактной машины, для которой затем пишется эмулятор ( Java Virtual Machine ) для реальных систем. Кроме того, в Java нет указателей и множественного наследования, что сильно повышает надежность программирования.

В 1998–2001 годах в корпорации Microsoft группой инженеров под руководством Андерса Хейлсберга в компании был создан язык C#. Он в достаточной степени схож с Java (и задумывался как альтернатива последнему), но имеет и отличительные особенности. Язык C# ориентирован, в основном, на разработку многокомпонентных интернет -приложений. Это основной язык разработки приложений для платформы Microsoft. NET . Компилятор с C# входит в стандартную установку самой. NET , поэтому программы на нем можно создавать и компилировать даже без инструментальных средств, вроде Visual Studio.

В 1983 году под эгидой Министерства обороны США был создан язык Ada . Он замечателен тем, что очень много ошибок может быть выявлено на этапе компиляции. Кроме того, поддерживаются многие аспекты программирования, которые часто отдаются на откуп операционной системе ( параллелизм , обработка исключений ). В 1995 году был принят стандарт языка Ada 95, который развивает предыдущую версию, добавляя в нее объектную ориентированность и исправляя некоторые неточности. Оба этих языка не получили широкого распространения вне военных и прочих крупномасштабных проектов (авиация, железнодорожные перевозки). Основной причиной является сложность освоения языка и достаточно громоздкий синтаксис (значительно более громоздкий, чем Pascal ).

Все вышеперечисленные языки являются языками общего назначения в том смысле, что они не ориентированы и не оптимизированы под использование каких-либо специфических структур данных или на применение в каких-либо специфических областях. Было разработано большое количество языков, ориентированных на достаточно специфические применения. Ниже приведен краткий обзор таких языков.

В 1957 году была предпринята попытка создания языка для описания математической обработки данных. Язык был назван APL ( Application Programming Language ). Его отличительной особенностью было использование математических символов (что затрудняло применение на текстовых терминалах; появление графических интерфейсов сняло эту проблему) и очень мощный синтаксис , который позволял производить множество нетривиальных операций прямо над сложными объектами, не прибегая к разбиению их на компоненты. Широкому применению помешало, как уже отмечалось, использование нестандартных символов как элементов синтаксиса.

В 1962 году появился язык Snobol (а в 1974 – его преемник Icon ), предназначенный для обработки строк. Синтаксис Icon напоминает С и Pascal одновременно. Отличие заключается в наличии мощных встроенных функций работы со строками и связанная с этими функциями особая семантика . Современным аналогом Icon и Snobol является Perl –язык обработки строк и текстов, в который добавлены некоторые объектно-ориентированные возможности. Считается очень практичным языком, однако ему недостает элегантности.

В 1969 году был создан язык SETL – язык для описания операций над множествами. Основной структурой данных в языке является множество, а операции аналогичны математическим операциям над множествами. Язык полезен при написании программ, имеющих дело со сложными абстрактными объектами.

В последнее время, в связи с развитием интернет -технологий, широким распространением высокопроизводительных компьютеров и рядом других факторов, получили распространение так называемые скриптовые языки. Эта языки первоначально ориентировались на применение в качестве внутренних управляющих языков во всякого рода сложных системах. Многие из них, однако же, вышли за пределы сферы своего изначального применения и используются ныне в совсем иных областях. Характерными особенностями данных языков являются, во-первых, их интерпретируемость ( компиляция либо невозможна, либо нежелательна), во-вторых, простота синтаксиса, а в-третьих, легкая расширяемость . Таким образом, они идеально подходят для работы в часто изменяемых программах, очень небольших программах или в случаях, когда для выполнения операторов языка затрачивается время, несопоставимое со временем их разбора. Было создано достаточно большое количество таких языков, перечислим лишь основные и наиболее часто используемые.

Язык JavaScript был создан в компании Netscape Communications в качестве языка для описания сложного поведения веб-страниц. Первоначально язык назывался LiveScript, причиной смены названия послужили маркетинговые соображения. Он интерпретируется браузером во время отображения веб-страницы, по синтаксису похож на Java и (отдаленно) на C/C++. Язык имеет возможность использовать встроенную в браузер объектную функциональность, однако подлинно объектно-ориентированным языком не является.

Другой скриптовый язык VBScript был создан в корпорации Microsoft во многом в качестве альтернативы JavaScript. Имеет подобную область применения, синтаксически похож на язык Visual Basic (является усеченной версией последнего); так же, как и JacaScript, исполняется браузером при отображении веб-страниц и имеет ту же степень объектной ориентированности.

Язык Perl, нашедший применение для динамической генерации веб-страниц на веб-серверах, создавался в помощь системному администратору операционной системы Unix для обработки различного рода текстов и выделения нужной информации. Развился до мощного средства работы с текстами. Является интерпретируемым языком и реализован практически на всех существующих платформах. Интерпретируемый объектно-ориентированный язык программирования Python по структуре и области применения близок к Perl, однако менее распространен и более строг и логичен. Имеются реализации для большинства существующих платформ.

Интересно рассмотрение группы ранних объектно-ориентированных языков. Объектно-ориентированный подход , пришедший на смену структурному, впервые появился отнюдь не в C++, как полагают некоторые. Существует целая череда чистых объектно-ориентированных языков, без сведений о которых наш обзор был бы неполным. Первым объектно-ориентрованным языком был язык Simula (1967). Этот язык был предназначен для моделирования различных объектов и процессов, и объектно-ориентированные черты появились в нем именно для описания свойств модельных объектов.

Популярность объектно-ориентированному программированию принес язык Smalltalk, созданный в 1972 году. Язык предназначался для проектирования сложных графических интерфейсов и был первым понастоящему объектно-ориентированным языком. В нем классы и объекты – это единственные конструкции программирования. Недостатком Smalltalk являются большие требования к памяти и низкая производительность полученных программ. Причина – в не очень удачной реализацией объектно-ориентированных особенностей. Популярность языков C++ и Ada 95 связана именно с тем, что объектная ориентированность реализована без существенного снижения производительности.

Существует еще язык с очень хорошей реализацией объектной ориентированности, не являющийся надстройкой ни над каким другим языком. Это язык Eiffel (1986 г.). Являясь чистым языком объектно-ориентированного программирования, он, кроме того, повышает надежность программы путем использования "контрольных утверждений".

Большинство компьютерных архитектур и языков программирования ориентированы на последовательное выполнение операторов программы. В настоящее время существуют программно-аппаратные комплексы, позволяющие организовать параллельное выполнение различных частей одного и того же вычислительного процесса. Для программирования таких систем необходима специальная поддержка со стороны средств программирования, в частности, языков программирования. Некоторые языки общего назначения содержат в себе элементы поддержки параллелизма, однако программирование истинно параллельных систем требует подчас специальных приемов .

Язык Оccam был создан в 1982 году и предназначен для программирования транспьютеров – многопроцессорных систем распределенной обработки данных. Он описывает взаимодействие параллельных процессов в виде каналов – способов передачи информации от одного процесса к другому. Отметим особенность синтаксиса языка Occam – в нем последовательный и параллельный порядки выполнение операторов равноправны, и их необходимо явно указывать ключевыми словами PAR и SEQ.

В 1985 году была предложена модель параллельных вычислений Linda. Основной ее задачей является организация взаимодействия между параллельно выполняющимися процессами. Это достигается за счет использования глобальной кортежной области ( tuple space ). Процесс может поместить туда кортеж с данными (то есть совокупность нескольких, возможно, разнородных данных), а другой процесс может ожидать появления в кортежной области некоторого кортежа и, после его появления, прочитать кортеж с возможным последующим его удалением.

Заметим, что процесс может, например, поместить кортеж в область и завершиться, а другой процесс может через некоторое время воспользоваться этим кортежем. Таким образом обеспечивается возможность асинхронного взаимодействия. Очевидно, что при помощи такой модели можно эмулировать и синхронное взаимодействие . Linda – это модель параллельных вычислений, она может быть добавлена в любой язык программирования . Существуют достаточно эффективные реализации Linda, обходящие проблему существования глобальной кортежной области с потенциально неограниченным объемом памяти.

Все языки, о которых шла речь ранее, имеют одно общее свойство: они императивны. Это означает, что программы на них, в конечном итоге, представляют собой пошаговое описание решения той или иной задачи. Можно попытаться описывать лишь постановку проблемы, а решать задачу поручить компилятору. Существует два основных подхода, развивающие эту идею: функциональное и логическое производится только тогда, когда оно действительно необходимо. Первые языки имеют более эффективную реализацию, в то время как вторые – лучшую семантику.

Из языков с энергичной семантикой упомянем ML и два его современных диалекта – Standard ML ( SML ) и CaML. Последний имеет объектно-ориентированного потомка – Objective CaML (O"CaML). Среди языков с ленивой семантикой наиболее распространены два: Haskell и его более простой диалект Clean. Интересен язык функционального программирования F#. Он является языком мультипарадигменного программирования. На нем можно писать функциональный, императивный и объектно-ориентированный код. Это позволяет быть более прагматичным, вместо того чтобы пытаться загнать любую задачу, стоящую перед разработчиком, в прокрустово ложе классов и интерфейсов. Язык F# включен в стандартный набор Visual Studio 2010, хотя присутствует и сейчас, в виде плагина для VS2008.

Window. Программировать на нем увлекательно. Этот язык рушит многие барьеры, связанные с программированием, и позволяет сконцентрироваться на написании кода, который нужен разработчику.

Важно отметить, что F# поддерживает почти все возможности, которые есть у C#. Поэтому его можно использовать, не опасаясь принципа "все или ничего". Не нужно выбрасывать существующий код и переводить все на F#. Вообще, предполагается, что код на F# будет главным образом применяться как библиотеки классов, интегрированные в большой программный продукт .

Программы на языках логического программирования выражены как формулы математической логики, а компилятор пытается получить следствия из них. Родоначальником большинства языков логического программирования является язык Prolog (1971). У него есть ряд потомков – Parlog (1983, ориентирован на параллельные вычисления), Delta Prolog и др.

Технология программирования во многом определяется языком программирования, на котором пишутся программы. В языке могут быть заложены средства, влияющие на технологичность и архитектуру разрабатываемой системы (например, объектная ориентированность, 0

В заключение раздела можно выделить некоторую общую тенденцию в развитии языков программирования. Языки развиваются в сторону все большей и большей абстракции. И это сопровождается падением эффективности. Вопрос: а стоит ли этого абстракция ? Ответ: стоит, так как повышение уровня абстракции влечет за собой повышение уровня надежности программирования. С низкой эффективностью можно бороться путем создания более быстрых компьютеров. Если требования к памяти слишком высоки, можно увеличить ее объем. Это требует времени и средств, но это решаемо. А вот с ошибками в программах можно бороться только одним способом: их надо исправлять. Еще лучше – не совершать. А еще лучше – максимально затруднить их совершение. И именно на это направлены все исследования в области языков программирования.

НХИ-1, 20.02.12

Инструментальные системы программирования.

Транслятор, компилятор, интерпретатор

Трансляторы для компьютеров реализуются в виде компиляторов и интерпретаторов , которые существенно различаются.

Компилято р читает текст исходной программы целиком , транслирует ее и создает программу на машинном языке, которая затем целиком выполняется компьютером или заносится в отдельный файл.

Интерпретатортранслирует и выполняет операторы отдельными строками программы. Поэтому программа, обрабатываемая интерпретатором, переводится на машинный язык при каждом запуске программы.

Инструментальные системы программирования предоставляют пользователям средства разработки программ. В них входят:

· компилятор и/или интерпретатор;

· средства создания и редактирования текстов программ;

· библиотеки стандартных программ и функций;

· диалоговая среда для пользователя;

· графические библиотеки и утилиты для работы с библиотеками

· и другие средства.

К инструментальным системам программирования относятся Turbo Basic , Quick Basic , Turbo Pascal , Turbo C, Delphy, Builder .

Язык Бейсик создан как язык для начинающих.

Язык Паскаль разработан Никласом Виртом для обучения студентов программированию. Паскаль – это язык структурного программирования . Расширенный вариант языка – Turbo Pascal .

Язык Си соединяет свойства языка высокого уровня с возможностями использования программирования как на языке Ассемблера.

Современныесистемы программирования: Borland Delphi , Microsoft Visual Basic, Borland C++ , которые предназначены для создания программ в среде Windows и предоставляют удобные средства визуальной разработки.

К инструментальным программам относятся:

· редакторы;

· средства компоновки программ;

· отладочные программы;

· графические пакеты программ и т.п.

Инструментальные программные средства используются на всех стадиях разработки программного обеспечения.

Инструментальные программные средства - это программы, которые используются в ходе разработки, корректировки или развития других прикладных или системных программ.

Инструментальные программные средства могут оказать помощь на всех стадиях разработки ПО. По своему назначению они близки системам программирования .

К инструментальным программам, например, относятся:

    редакторы;

    средства компоновки программ;

    вспомогательные программы, реализующие часто используемые системные действия;

    графические пакеты программ и т.п.

      1. Система программирования

Система программирования - это система для разработки новых программ на конкретном языке программирования.

Современные системы программирования обычно предоставляют пользователям мощные и удобные средства разработки программ. В них входят:

    компилятор или интерпретатор;

    интегрированная среда разработки;

    средства создания и редактирования текстов программ;

    обширные библиотеки стандартных программ и функций;

    отладочные программы, т.е. программы, помогающие находить и устранять ошибки в программе;

    "дружественная" к пользователю диалоговая среда;

    многооконный режим работы;

    мощные графические библиотеки; утилиты для работы с библиотеками

    встроенный ассемблер;

    встроенная справочная служба;

    другие специфические особенности.

Транслятор (англ. translator - переводчик) - это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд.

Трансляторы реализуются в виде компиляторов или интерпретаторов. С точки зрения выполнения работы компилятор и интерпретатор существенно различаются.

Компилятор (англ. compiler - составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

Интерпретатор (англ. interpreter - истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.

После того, как программа откомпилирована, ни сама исходная программа, ни компилятор более не нужны. В то же время программа, обрабатываемая интерпретатором, должна заново переводиться на машинный язык при каждом очередном запуске программы.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять.

Популярные системы программирования – Turbo Basic, Quick Basic, Turbo Pascal, Turbo C, Borland C++, Borland Delphi и др.

Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Pascal обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора. С другой стороны, Basic создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.

      Тенденции развития программного обеспечения