Биометрическая защита: технологии и применение

Где применяется биометрическая защита. Биометрические системы защиты: описание, характеристики, практическое применение. Виды биометрических технологий

Андрей Борзенко

Чтобы установить личность задержанного,
полицейскому было достаточно
просто заглянуть ему в глаза.
Из газет

По мере развития компьютерных сетей и расширения сфер автоматизации ценность информации неуклонно возрастает. Государственные секреты, наукоемкие ноу-хау, коммерческие, юридические и врачебные тайны все чаще доверяются компьютеру, который, как правило, подключен к локальным и корпоративным сетям. Популярность глобальной сети Интернет, с одной стороны, открывает огромные возможности для электронной коммерции, но, с другой стороны, создает потребность в более надежных средствах безопасности для защиты корпоративных данных от доступа извне. В настоящее время все больше компаний сталкиваются с необходимостью предотвратить несанкционированный доступ к своим системам и защитить транзакции в электронном бизнесе.

Практически до конца 90-х годов основным способом персонификации пользователя было указание его сетевого имени и пароля. Справедливости ради нужно отметить, что подобного подхода по-прежнему придерживаются во многих учреждениях и организациях. Опасности, связанные с использованием пароля, хорошо известны: пароли забывают, хранят в неподходящем месте, наконец, их могут просто украсть. Некоторые пользователи записывают пароль на бумаге и держат эти записи рядом со своими рабочими станциями. Как сообщают группы информационных технологий многих компаний, большая часть звонков в службу поддержки связана с забытыми или утратившими силу паролями.

Известно, что систему можно обмануть, представившись чужим именем. Для этого необходимо лишь знать некую идентифицирующую информацию, которой, с точки зрения системы безопасности, обладает один-единственный человек. Злоумышленник, выдав себя за сотрудника компании, получает в свое распоряжение все ресурсы, доступные данному пользователю в соответствии с его полномочиями и должностными обязанностями. Результатом могут стать различные противоправные действия, начиная от кражи информации и заканчивая выводом из строя всего информационного комплекса.

Разработчики традиционных устройств идентификации уже столкнулись с тем, что стандартные методы во многом устарели. Проблема, в частности, состоит в том, что общепринятое разделение методов контроля физического доступа и контроля доступа к информации более несостоятельно. Ведь для получения доступа к серверу иногда совсем не обязательно входить в помещение, где он стоит. Причиной тому — ставшая всеобъемлющей концепция распределенных вычислений, объединяющая и технологию клиент-сервер, и Интернет. Для решения этой проблемы требуются радикально новые методы, основанные на новой идеологии. Проведенные исследования показывают, что ущерб в случаях несанкционированного доступа к данным компаний может составлять миллионы долларов.

Есть ли выход из этой ситуации? Оказывается, есть, и уже давно. Просто для доступа к системе нужно применять такие методы идентификации, которые не работают в отрыве от их носителя. Этому требованию отвечают биометрические характеристики человеческого организма. Современные биометрические технологии позволяют идентифицировать личность по физиологическим и психологическим признакам. Кстати, биометрия известна человечеству очень давно — еще древние египтяне использовали идентификацию по росту.

Основы биометрической идентификации

Главная цель биометрической идентификации заключается в создании такой системы регистрации, которая крайне редко отказывала бы в доступе легитимным пользователям и в то же время полностью исключала несанкционированный вход в компьютерные хранилища информации. По сравнению с паролями и карточками такая система обеспечивает гораздо более надежную защиту: ведь собственное тело нельзя ни забыть, ни потерять. Биометрическое распознавание объекта основано на сравнении физиологических или психологических особенностей этого объекта с его характеристиками, хранящимися в базе данных системы. Подобный процесс постоянно происходит в мозгу человека, позволяя узнавать, например, своих близких и отличать их от незнакомых людей.

Биометрические технологии можно разделить на две большие категории — физиологические и психологические (поведенческие). В первом случае анализируются такие признаки, как черты лица, структура глаза (сетчатки или радужной оболочки), параметры пальцев (папиллярные линии, рельеф, длина суставов и т.д.), ладонь (ее отпечаток или топография), форма руки, рисунок вен на запястье или тепловая картина. Психологические характеристики — это голос человека, особенности его подписи, динамические параметры письма и особенности ввода текста с клавиатуры.

На выбор метода, наиболее подходящего в той или иной ситуации, влияет целый ряд факторов. Предлагаемые технологии отличаются по эффективности, причем их стоимость в большинстве случаев прямо пропорциональна уровню надежности. Так, применение специализированной аппаратуры иной раз повышает стоимость каждого рабочего места на тысячи долларов.

Физиологические особенности, например, папиллярный узор пальца, геометрия ладони или рисунок (модель) радужной оболочки глаза — это постоянные физические характеристики человека. Данный тип измерений (проверки) практически неизменен, так же, как и сами физиологические характеристики. Поведенческие же характеристики, например, подпись, голос или клавиатурный почерк, находятся под влиянием как управляемых действий, так и менее управляемых психологических факторов. Поскольку поведенческие характеристики могут изменяться с течением времени, зарегистрированный биометрический образец должен при каждом использовании обновляться. Биометрия, основанная на поведенческих характеристиках, дешевле и представляет меньшую угрозу для пользователей; зато идентификация личности по физиологическим чертам более точна и дает большую безопасность. В любом случае оба метода обеспечивают значительно более высокий уровень идентификации, чем пароли или карты.

Важно отметить, что все биометрические средства аутентификации в той или иной форме используют статистические свойства некоторых качеств индивида. Это означает, что результаты их применения носят вероятностный характер и будут изменяться от раза к разу. Кроме того, все подобные средства не застрахованы от ошибок аутентификации. Существует два рода ошибок: ложный отказ (не признали своего) и ложный допуск (пропустили чужого). Надо сказать, что тема эта в теории вероятностей хорошо изучена еще со времен развития радиолокации. Влияние ошибок на процесс аутентификации оценивается с помощью сравнения средних вероятностей соответственно ложного отказа и ложного допуска. Как показывает практика, эти две вероятности связаны обратной зависимостью, т.е. при попытке ужесточить контроль повышается вероятность не пустить в систему своего, и наоборот. Таким образом, в каждом случае необходимо искать некий компромисс. Тем не менее, даже по самым пессимистичным оценкам экспертов, биометрия выигрывает при всех сравнениях, поскольку она значительно надежнее, чем другие существующие методы аутентификации.

Кроме эффективности и цены, компаниям следует учитывать также реакцию служащих на биометрические средства. Идеальная система должна быть простой в применении, быстрой, ненавязчивой, удобной и приемлемой с социальной точки зрения. Однако ничего идеального в природе нет, и каждая из разработанных технологий лишь частично соответствует всему набору требований. Но даже самые неудобные и непопулярные средства (например, идентификация по сетчатке, которой пользователи всячески стараются избежать, защищая свои глаза) приносят нанимателю несомненную пользу: они демонстрируют должное внимание компании к вопросам безопасности.

Развитие биометрических устройств идет по нескольким направлениям, но общие для них черты — это непревзойденный на сегодня уровень безопасности, отсутствие традиционных недостатков парольных и карточных систем защиты и высокая надежность. Успехи биометрических технологий связаны пока главным образом с организациями, где они внедряются в приказном порядке, например, для контроля доступа в охраняемые зоны или идентификации лиц, привлекших внимание правоохранительных органов. Корпоративные пользователи, похоже, еще не осознали потенциальных возможностей биометрии в полной мере. Часто менеджеры компаний не рискуют развертывать у себя биометрические системы, опасаясь, что из-за возможных неточностей в измерениях пользователи будут получать отказы в доступе, на который у них есть права. Тем не менее новые технологии все активнее проникают на корпоративный рынок. Уже сегодня существуют десятки тысяч компьютеризованных мест, хранилищ, исследовательских лабораторий, банков крови, банкоматов, военных сооружений, доступ к которым контролируется устройствами, сканирующими уникальные физиологические или поведенческие характеристики индивидуума.

Методы аутентификации

Как известно, аутентификация подразумевает проверку подлинности субъекта, которым в принципе может быть не только человек, но и программный процесс. Вообще говоря, аутентификация индивидов возможна за счет предъявления информации, хранящейся в различной форме. Это может быть:

  • пароль, личный номер, криптографический ключ, сетевой адрес компьютера в сети;
  • смарт-карта, электронный ключ;
  • внешность, голос, рисунок радужной оболочки глаз, отпечатки пальцев и другие биометрические характеристики пользователя.

Аутентификация позволяет обоснованно и достоверно разграничить права доступа к информации, находящейся в общем пользовании. Однако, с другой стороны, возникает проблема обеспечения целостности и достоверности этой информации. Пользователь должен быть уверен, что получает доступ к информации из заслуживающего доверия источника и что данная информации не модифицировалась без соответствующих санкций.

Поиск совпадения «один к одному» (по одному атрибуту) называется верификацией. Этот способ отличается высокой скоростью и предъявляет минимальные требования к вычислительной мощности компьютера. А вот поиск «один ко многим» носит название идентификации. Реализовать подобный алгоритм обычно не только сложно, но и дорого. Сегодня на рынок выходят биометрические устройства, использующие для верификации и идентификации пользователей компьютеров такие индивидуальные характеристики человека, как отпечатки пальцев, черты лица, радужную оболочку и сетчатку глаза, форму ладони, особенности голоса, речи и подписи. На стадии тестирования и опытной эксплуатации находятся системы, позволяющие выполнять аутентификацию пользователей по тепловому полю лица, рисунку кровеносных сосудов руки, запаху тела, температуре кожи и даже по форме ушей.

Любая биометрическая система позволяет распознавать некий шаблон и устанавливать аутентичность конкретных физиологических или поведенческих характеристик пользователя. Логически биометрическую систему можно разделить на два модуля: модуль регистрации и модуль идентификации. Первый отвечает за то, чтобы обучить систему идентифицировать конкретного человека. На этапе регистрации биометрические датчики сканируют необходимые физиологические или поведенческие характеристики человека и создают их цифровое представление. Специальный модуль обрабатывает это представление с тем, чтобы выделить характерные особенности и сгенерировать более компактное и выразительное представление, называемое шаблоном. Для изображения лица такими характерными особенностями могут стать размер и относительное расположение глаз, носа и рта. Шаблон для каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации отвечает за распознавание человека. На этапе идентификации биометрический датчик снимает характеристики человека, которого нужно идентифицировать, и преобразует эти характеристики в тот же цифровой формат, в котором хранится шаблон. Полученный шаблон сравнивается с хранимым, чтобы определить, соответствуют ли эти шаблоны друг другу.

Например, в ОС Microsoft Windows для аутентификации пользователя требуется два объекта — имя пользователя и пароль. При использовании в процессе аутентификации отпечатков пальцев имя пользователя вводится для регистрации, а отпечаток пальца заменяет пароль (рис. 1). Эта технология использует имя пользователя в качестве указателя для получения учетной записи пользователя и проверки соответствия «один к одному» между шаблоном считанного при регистрации отпечатка и шаблоном, ранее сохраненным для данного имени пользователя. Во втором случае введенный при регистрации шаблон отпечатка пальца необходимо сопоставить со всем набором сохраненных шаблонов.

При выборе способа аутентификации имеет смысл учитывать несколько основных факторов:

  • ценность информации;
  • стоимость программно-аппаратного обеспечения аутентификации;
  • производительность системы;
  • отношение пользователей к применяемым методам аутентификации;
  • специфику (предназначение) защищаемого информационного комплекса.

Очевидно, что стоимость, а следовательно, качество и надежность средств аутентификации должны быть напрямую связаны с важностью информации. Кроме того, повышение производительности комплекса, как правило, также сопровождается его удорожанием.

Отпечатки пальцев

В последние годы процесс идентификации личности по отпечатку пальца обратил на себя внимание как биометрическая технология, которая, вполне вероятно, будет наиболее широко использоваться в будущем. По оценкам Gartner Group (http://www.gartnergroup.com), данная технология доминирует на корпоративном рынке и в ближайшее время конкуренцию ей может составить лишь технология опознавания по радужной оболочке глаза.

Правительственные и гражданские организации во всем мире уже давно используют отпечатки пальцев в качестве основного метода установления личности. Кроме того, отпечатки — это наиболее точная, дружественная к пользователю и экономичная биометрическая характеристика для применения в компьютерной системе идентификации. Данной технологией в США пользуются, например, отделы транспортных средств администраций ряда штатов, MasterCard, ФБР, Секретная служба, Агентство национальной безопасности, министерства финансов и обороны и т.д. Устраняя потребность в паролях для пользователей, технология распознавания отпечатков пальцев сокращает число обращений в службу поддержки и снижает расходы на сетевое администрирование.

Обычно системы распознавания отпечатков пальцев разделяют на два типа: для идентификации — AFIS (Automatic Fingerprint Identification Systems) и для верификации. В первом случае используются отпечатки всех десяти пальцев. Подобные системы находят широкое применение в судебных органах. Устройства верификации обычно оперируют с информацией об отпечатках одного, реже нескольких пальцев. Сканирующие устройства бывают, как правило, трех типов: оптические, ультразвуковые и на основе микрочипа.

Преимущества доступа по отпечатку пальца — простота использования, удобство и надежность. Известны два основополагающих алгоритма распознавания отпечатков пальцев: по отдельным деталям (характерным точкам) и по рельефу всей поверхности пальца. Соответственно в первом случае устройство регистрирует только некоторые участки, уникальные для конкретного отпечатка, и определяет их взаимное расположение. Во втором случае обрабатывается изображение всего отпечатка. В современных системах все чаще используется комбинация этих двух способов. Это позволяет избежать недостатков обоих и повысить достоверность идентификации. Единовременная регистрация отпечатка пальца человека на оптическом сканере занимает немного времени. Крошечная CCD-камера, выполненная в виде отдельного устройства или встроенная в клавиатуру, делает снимок отпечатка пальца. Затем с помощью специальных алгоритмов полученное изображение преобразуется в уникальный «шаблон» — карту микроточек отпечатка, которые определяются имеющимися в нем разрывами и пересечениями линий. Этот шаблон (а не сам отпечаток) затем шифруется и записывается в базу данных для аутентификации сетевых пользователей. В одном шаблоне хранится от нескольких десятков до сотен микроточек. При этом пользователи могут не беспокоиться о неприкосновенности своей частной жизни, поскольку сам отпечаток пальца не сохраняется и не может быть воссоздан по микроточкам.

Преимущество ультразвукового сканирования — возможность определения требуемых характеристик на грязных пальцах и даже через тонкие резиновые перчатки. Стоит отметить, что современные системы распознавания нельзя обмануть даже свежеотрубленными пальцами (микрочип измеряет физические параметры кожи). Разработкой подобных систем занимаются более 50 различных производителей.

Использование отпечатка пальца для идентификации личности — самый удобный из всех биометрических методов. Вероятность ошибки при идентификации пользователя намного меньше в сравнении с другими методами биометрии. Качество распознавания отпечатка и возможность его правильной обработки алгоритмом сильно зависят от состояния поверхности пальца и его положения относительно сканирующего элемента. Различные системы предъявляют разные требования к этим двум параметрам. Характер требований зависит, в частности, от применяемого алгоритма. К примеру, распознавание по характерным точкам дает сильный уровень шума при плохом состоянии поверхности пальца. Распознавание по всей поверхности лишено этого недостатка, но для него требуется очень точно размещать палец на сканирующем элементе. Устройство идентификации по отпечатку пальца (сканер, рис. 2) не требует много места и может быть вмонтировано в указательный манипулятор (мышь) или клавиатуру.

Геометрия лица

Идентификация человека по лицу в обычной жизни, без всяких сомнений, — самый распространенный способ распознавания. Что касается ее технической реализации, она представляет собой более сложную (с математической точки зрения) задачу, нежели распознавание отпечатков пальцев, и, кроме того, требует более дорогостоящей аппаратуры (нужна цифровая видео- или фотокамера и плата захвата видеоизображения). У этого метода есть один существенный плюс: для хранения данных об одном образце идентификационного шаблона требуется совсем немного памяти. А все потому, что, как выяснилось, человеческое лицо можно «разобрать» на относительно небольшое количество участков, неизменных у всех людей. Например, для вычисления уникального шаблона, соответствующего конкретному человеку, требуется всего от 12 до 40 характерных участков.

Обычно камера устанавливается на расстоянии в несколько десятков сантиметров от объекта. Получив изображение, система анализирует различные параметры лица (например, расстояние между глазами и носом). Большинство алгоритмов позволяет компенсировать наличие у исследуемого индивида очков, шляпы и бороды. Для этой цели обычно используется сканирование лица в инфракрасном диапазоне. Было бы наивно предполагать, что подобные системы дают очень точный результат. Несмотря на это, в ряде стран они довольно успешно используются для верификации кассиров и пользователей депозитных сейфов.

Геометрия руки

Наряду с системами для оценки геометрии лица существует оборудование для распознавания очертаний ладоней рук. При этом оценивается более 90 различных характеристик, включая размеры самой ладони (три измерения), длину и ширину пальцев, очертания суставов и т.п. В настоящее время идентификация пользователей по геометрии руки используется в законодательных органах, международных аэропортах, больницах, иммиграционных службах и т.д. Преимущества идентификации по геометрии ладони сравнимы с плюсами идентификации по отпечатку пальца в вопросе надежности, хотя устройство для считывания отпечатков ладоней занимает больше места.

Радужная оболочка глаза

Довольно надежное распознавание обеспечивают системы, анализирующие рисунок радужной оболочки человеческого глаза. Дело в том, что эта характеристика довольно стабильна, не меняется практически в течение всей жизни человека, невосприимчива к загрязнению и ранам. Заметим также, что радужки правого и левого глаза по рисунку существенно различаются.

Обычно различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза можно отсканировать даже на расстоянии менее метра, благодаря чему сканеры для радужной оболочки пригодны для банкоматов.

Сетчатка глаза

Метод идентификации по сетчатке глаза получил практическое применение сравнительно недавно — где-то в середине 50-х годов теперь уже прошедшего XX века. Именно тогда было доказано, что даже у близнецов рисунок кровеносных сосудов сетчатки не совпадает. Для того, чтобы зарегистрироваться в специальном устройстве, достаточно смотреть в глазок камеры менее минуты. За это время система успевает подсветить сетчатку и получить отраженный сигнал. Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен первоначальных характерных точек, информация о которых усредняется и сохраняется в кодированном файле. К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякий человек отважится посмотреть в неведомое темное отверстие, где что-то светит в глаз. К тому же надо следить за положением глаза относительно отверстия, поскольку подобные системы, как правило, чувствительны к неправильной ориентации сетчатки. Сканеры для сетчатки глаза получили большое распространение при организации доступа к сверхсекретным системам, поскольку гарантируют один из самых низких процентов отказа в доступе зарегистрированных пользователей и почти нулевой процент ошибок.

Голос и речь

Многие фирмы выпускают программное обеспечение, способное идентифицировать человека по голосу. Здесь оцениваются такие параметры, как высота тона, модуляция, интонация и т.п. В отличие от распознавания внешности, данный метод не требует дорогостоящей аппаратуры — достаточно лишь звуковой платы и микрофона.

Идентификация по голосу удобный, но не столь надежный способ, как другие биометрические методы. Например, у простуженного человека могут возникнуть трудности при использовании таких систем. Голос формируется из комбинации физиологических и поведенческих факторов, поэтому основная проблема, связанная с этим биометрическим подходом, — точность идентификации. В настоящее время идентификация по голосу используется для управления доступом в помещение средней степени безопасности.

Подпись

Как оказалось, подпись — такой же уникальный атрибут человека, как и его физиологические характеристики. Кроме того, это и более привычный для любого человека метод идентификации, поскольку он, в отличие от снятия отпечатков пальцев, не ассоциируется с криминальной сферой. Одна из перспективных технологий аутентификации основана на уникальности биометрических характеристик движения человеческой руки во время письма. Обычно выделяют два способа обработки данных о подписи: простое сравнение с образцом и динамическую верификацию. Первый весьма ненадежен, так как основан на обычном сравнении введенной подписи с хранящимися в базе данных графическими образцами. Из-за того, что подпись не может быть всегда одинаковой, этот метод дает большой процент ошибок. Способ динамической верификации требует намного более сложных вычислений и позволяет в реальном времени фиксировать параметры процесса подписи, такие как скорость движения руки на разных участках, сила давления и длительность различных этапов подписи. Это дает гарантии того, что подпись не сможет подделать даже опытный графолог, поскольку никто не в состоянии в точности скопировать поведение руки владельца подписи.

Пользователь, используя стандартный дигитайзер и ручку, имитирует свою обычную подпись, а система считывает параметры движения и сверяет их с теми, что были заранее введены в базу данных. При совпадении образа подписи с эталоном система прикрепляет к подписываемому документу информацию, включающую имя пользователя, адрес его электронной почты, должность, текущее время и дату, параметры подписи, содержащие несколько десятков характеристик динамики движения (направление, скорость, ускорение) и другие. Эти данные шифруются, затем для них вычисляется контрольная сумма, и далее все это шифруется еще раз, образуя так называемую биометрическую метку. Для настройки системы вновь зарегистрированный пользователь от пяти до десяти раз выполняет процедуру подписания документа, что позволяет получить усредненные показатели и доверительный интервал. Впервые данную технологию использовала компания PenOp.

Идентификацию по подписи нельзя использовать повсюду — в частности, этот метод не подходит для ограничения доступа в помещения или для доступа в компьютерные сети. Однако в некоторых областях, например в банковской сфере, а также всюду, где происходит оформление важных документов, проверка правильности подписи может стать наиболее эффективным, а главное — необременительным и незаметным способом. До сих пор финансовое сообщество не спешило принимать автоматизированные методы идентификации подписи для кредитных карточек и проверки заявления, потому что подписи все еще слишком легко подделать. Это препятствует внедрению идентификации личности по подписи в высокотехнологичные системы безопасности.

Перспективы

Хотелось бы отметить, что наибольшую эффективность защиты обеспечивают системы, в которых биометрические системы сочетаются с другими аппаратными средствами аутентификации, например смарт-картами. Комбинируя различные способы биометрической и аппаратной аутентификации, можно получить весьма надежную систему защиты (что косвенно подтверждается большим интересом, который проявляют к этим технологиям ведущие производители).

Заметим, что смарт-карты образуют один из самых крупных и быстрорастущих сегментов рынка электронных продуктов для пользователей. По прогнозам фирмы Dataquest (http://www.dataquest.com), к следующему году объем продаж смарт-карт превысит полмиллиарда долларов. Применение смарт-карт требует наличия на каждом рабочем месте специального считывающего (терминального) устройства, подключенного к компьютеру, которое исключает необходимость вовлечения пользователя в процесс взаимодействия карты и сервера аутентификации. Собственно смарт-карта обеспечивает два уровня аутентификации. Для того чтобы система заработала, пользователь должен вставить смарт-карту в считывающее устройство, а затем правильно ввести личный идентификационный номер. На российском рынке комплексные решения, сочетающие идентификацию по отпечаткам пальцев и использование смарт-карт (рис. 3), предлагают, например, компании Compaq (http://www.compaq.ru) и Fujitsu-Siemens (http://www.fujitsu-siemens.ru).

Рис. 3. Комбинированная система со сканером и смарт-картой.

Кроме крупных компьютерных компаний, таких как Fujitsu-Siemens, Motorola, Sony, Unisys, разработкой биометрических технологий в настоящее время занимаются преимущественно небольшие частные компании, которые объединились в консорциум по биометрии — Biometric Consortium (http://www.biometrics.org). Одно из наиболее обнадеживающих свидетельств того, что биометрия наконец вливается в основное русло ИТ-индустрии, — создание интерфейса прикладного программирования BioAPI (Biometrics API). За этой разработкой стоит консорциум производителей, сформированный в 1998 г. корпорациями Compaq, IBM, Identicator Technology, Microsoft, Miros и Novell специально для выработки стандартизованной спецификации, поддерживающей существующие биометрические технологии, которую можно было бы внедрить в операционные системы и прикладное ПО. В консорциум BioAPI сегодня входят 78 крупных государственных и частных компаний.

Теперь корпоративные клиенты могут использовать биометрические продукты в рамках стандартных компьютерных и сетевых технологий, избежав, таким образом, значительных материальных и временных затрат на интеграцию всех компонентов системы. Стандартные API дают доступ к широкому спектру биометрических устройств и программных продуктов, а также позволяют совместно применять продукты нескольких поставщиков.

В этом году правительство США уже объявило о внедрении в государственных учреждениях открытого стандарта BioAPI. Нововведения коснутся в первую очередь министерства обороны США, где для нескольких миллионов военных и гражданских сотрудников предполагается ввести новые смарт-карты, хранящие отпечатки пальцев и образец подписи владельца.

По мнению ряда аналитиков, биометрические технологии развиваются пока достаточно медленно, однако недалеко то время, когда не только настольные и портативные компьютеры, но и мобильные телефоны будут немыслимы без подобных средств аутентификации. Большие ожидания связаны с поддержкой перспективных биометрических технологий операционной системой Microsoft Windows.

В последние годы во всем мире наблюдается все возрастающий интерес к методам распознавания и идентификации личности. Основные пути и способы решения этих задач лежат в области разработки биометрических систем. В биометрических системах для распознавания человека используется совокупность биометрических характеристик, основанных на биологических особенностях человеческого тела. В качестве таких биометрических характеристик могут выступать: голос, почерк, отпечатки пальцев, геометрия кисти руки, рисунок сетчатки или радужной оболочки глаза, лицо и ДНК.}

Биометрическая защита более эффективна в сравнении с такими методами, как использование паролей, PIN-кодов, смарт-карт, жетонов (tokens) или технологии PKI (инфраструктура открытых ключей), поскольку биометрия позволяет идентифицировать именно конкретного человека, а не устройство. Традиционные методы защиты не исключают возможности потери или кражи информации, вследствие чего она становится доступной незаконным пользователям. Уникальный биометрический идентификатор, каковым является, например, отпечаток пальца или изображение лица, служит ключом, который невозможно потерять. Биометрическая система безопасности позволяет отказаться от парольной защиты либо служит для ее усиления.

Одной из основных причин, которые существенно повысили значимость автоматической обработки и анализа биометрической информации, явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, то есть не только бесконтактно (дистанционно), но и без специального сотрудничества (специального предъявления биометрических признаков) со стороны идентифицируемых персон.

В настоящее время существует множество методов биометрической аутентификации, которые делятся на две основные группы — статические и динамические методы.

Статические методы биометрической аутентификации основываются на физиологической (статической) характеристике человека, то есть уникальной характеристике, данной ему от рождения и неотъемлемой от него. К этой группе относятся следующие методы аутентификации.

  1. $\textit{По отпечатку пальца.}$ В основе этого метода лежит уникальность для каждого человека рисунка папиллярных узоров на пальцах. Отпечаток пальца, полученный с помощью специального сканера, преобразуется в цифровой код (свертку) и сравнивается с ранее введенным эталоном. Данная технология является самой распространенной по сравнению с другими методами биометрической аутентификации.
  2. $\textit{По форме ладони.}$ Данный метод построен на геометрии кисти руки. С помощью специального устройства, состоящего из камеры и нескольких подсвечивающих диодов (включаясь по очереди, они дают разные проекции ладони), строится трехмерный образ кисти руки, по которому формируется свертка и распознается человек.
  3. $\textit{По расположению вен на лицевой стороне ладони.}$ С помощь инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки, полученная картинка обрабатывается, и по схеме расположения вен формируется цифровая свертка.
  4. $\textit{По сетчатке глаза.}$ Вернее, это способ идентификации по рисунку кровеносных сосудов глазного дна. Для того чтобы этот рисунок стал виден, человеку нужно посмотреть на удаленную световую точку, при этом подсвеченное глазное дно сканируется специальной камерой.
  5. $\textit{По радужной оболочке глаза.}$ Рисунок радужной оболочки глаза также является уникальной характеристикой человека, причем для ее сканирования достаточно портативной камеры со специализированный программным обеспечением, позволяющим захватывать изображение части лица, из которого выделяется изображение глаза, из которого в свою очередь выделяется рисунок радужной оболочки, по которому строится цифровой код для идентификации человека.
  6. $\textit{По изображению или форме лица.}$ В данном методе идентификации строится двумерный или трехмерный образ лица человека. На лице выделяются контуры бровей, глаз, носа, губ и т. д., вычисляется расстояние между ними и строится не просто образ, а еще множество его вариантов на случаи поворота лица, наклона, изменения выражения. Количество образов варьируется в зависимости от целей использования данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т. д.).
  7. $\textit{По термограмме лица}$. В основе данного способа аутентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы используются специальные камеры инфракрасного диапазона. В отличие от предыдущего, этот метод позволяет различать даже близнецов.
  8. $\textit{По ДНК}$. Преимущества данного способы очевидны, однако используемые в настоящее время методы получения и обработки ДНК работают настолько долго, что такие системы используются только для специализированных экспертиз.
  9. $\textit{Другие методы}$. Существуют еще такие уникальные способы — как идентификация по подногтевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела и т. д.

Как видно, большинство биометрических технологий данной группы связано с анализом изображений и реализуется теми или иными методами компьютерного зрения.

Динамические методы биометрической аутентификации основываются на поведенческой (динамической) характеристике человека, то есть построены на особенностях, характерных для подсознательных движений в процессе воспроизведения какого-либо действия. Методы аутентификации этой группы таковы.

1. $\textit{По рукописному почерку.}$ Как правило, для этого вида идентификации человека используется его роспись (иногда написание кодового слова). Цифровой код идентификации формируется в зависимости от необходимой степени защиты и наличия оборудования (графический планшет, экран карманного компьютера Palm и т. д.) двух типов:

По самой росписи, то есть для идентификации используется просто степень совпадения двух картинок;

По росписи и динамическим характеристикам написания, то есть для идентификации строится свертка, в которую входит информация по непосредственно подписи, временн ым характеристикам нанесения росписи и статистическим характеристикам динамики нажима на поверхность.

2. $\textit{По клавиатурному почерку.}$ Метод в целом аналогичен вышеописанному, но вместо росписи используется некое кодовое слово (когда для этого используется личный пароль пользователя, такую аутентификацию называют двухфакторной), и не нужно никакого специального оборудования, кроме стандартной клавиатуры. Основной характеристикой, по которой строится свертка для идентификации, является динамика набора кодового слова.

3. $\textit{По голосу.}$ Это одна из старейших технологий, в настоящее время ее развитие ускорилось, так как предполагается ее широкое использование в построении «интеллектуальных зданий». Существует достаточно много способов построения кода идентификации по голосу, как правило, это различные сочетания частотных и статистических характеристик голоса.

4. Другие методы. Для данной группы методов также описаны только самые распространенные методы, существуют еще такие уникальные способы, как идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т. д.

Краткий исторический обзор.

Проблематика компьютерной биометрической идентификации активно развивается с 1960-х годов. Можно отметить следующие основные вехи этого процесса.

  1. 1960-e — создано биометрическое подразделение NIST, первые попытки автоматизации процесса идентификации личности по следующим биометрическим характеристикам: лицо, голос, отпечатки, подпись.
  2. 1970-е годы — первые автоматизированные системы верификации личности, методы идентификации по форме ладони и динамической подписи.
  3. 1976 — первые мультибиометрические эксперименты.
  4. 1980-е годы — значительно автоматизированные системы и первые методы

полностью автоматической идентификации.

С конца 1980х годов наблюдается всплеск научного и практического интереса к биометрической идентификации, сопровождающийся ростом числа биометрических методов, алгоритмов и технологий, в том числе в СССР и России. Это связано не столько с прикладным интересом к биометрической идентификации, сколько с развитием аппаратных средств, в первую очередь, персональных компьютеров и периферийных устройств для работы с изображениями и аудиосигналами.

В России наиболее важные результаты по биометрической идентификации были получены в работах С. О. Новикова, В. Ю. Гудкова, О. М. Черномордика по распознаванию отпечатков пальцев, Г. А. Кухарева и А. А. Тельных по различным аспектам лицевой биометрии, А. И. Иванова и А. Ю. Малыгина по нейросетевым методам биометрической идентификации, Л. М. Местецкого по распознаванию на основе параметров кисти руки, И. Н. Спиридонова в области стандартизации и биометрической техники, В. И. Дымкова и И. Н. Синицына по автоматизации научных исследований в области биометрической идентификации, С. Л. Бочкарева в области голосовой идентификации личности, О. С. Ушмаева по мультибиометрии.

Сложились научные школы, занимающиеся проблематикой биометрической идентификации. Среди них следует выделить коллективы специалистов, работающих в институтах ИПИ РАН, ГосНИИАС, ИСА РАН, МГУ им. М. В. Ломоносова, МГТУ им. Н. Э. Баумана, ФГУП «ПНИЭИ»; компаниях «Биолинк», «Вокорд Телеком», НПП «Лазерные системы», «Системы Папилон», «Сонда», «СТЭЛ», «Центр речевых технологий».

Среди зарубежных исследований в области биометрической идентификации следует выделить работы таких специалистов, как P. Phillips, P. Grother, А. Jain, N. Ratha, P. Griffin, D. Maio, D. Maltoni, A. Masnfield, J. Wayman, K. Bowyer, M. Turk, A. Pentland, R. Bolle, A. Ross, J. Daugman, D. Zhang, Karr-Ann Toh, O. Tosi, S. Pankanti, C. Soutar, Tieniu Tan, O. Castillo, P. Melin, J. P. Campbell, J. Garofolo, D. Reynolds, L. Flom, J. Kittler, P. Flynn, R. Chellappa, W. Zhao, J.-C. Junqua, J. F. Bonastre, J. Bigun, K. Brady, D. Burr, B. Dorizzi, S. Prabhakar, J. Conell, G. Doddington, J. Ortega-Garcia, A. Bazen, S. Gerez, R. Plamondon, M. Eleccion, M. Fornefett, J. Wegstein, L. Kersta, L. Harmon, A. Fejfar, T. Vetter, A. G. Kersta, L. D. Harmon, B. G. Sherlock, D. M. Monro, M. Kucken.

Существующие биометрические системы.

В настоящее время на рынке предлагается ряд готовых систем и технологий биометрической идентификации и аутентификации личности.

Например, в области распознавания лиц одними из наиболее продвинутых решений являются следующие.

Система ZN-Face компании $\textit{ZN Vision Technologies AG}$ сочетает в себе новейшие компьютерные разработки с системой контроля доступа, основанной на автоматическом распознавании лиц. ZN-камера делает снимок человека, стоящего на рубеже контроля, и проверяет его в считанные доли секунды. Специально разработанный модуль оптического фильтра и функция контроля за живым лицом предотвращает любую попытку обмана путем применения фотографий или масок.

Компьютеризованная база фотоданных ZN-Phantomas может автоматически сравнивать и идентифицировать лица. Для сравнения годится фотография, фоторобот, рисунок или кадр, полученный при видеосъемке. ZN-Phantomas проводит поиск среди сохраненных в памяти изображений, используя систему распознавания лиц, созданную по образу работы человеческого мозга на базе технологии органического видения. Скорость работы системы позволяет просматривать 10 тыс изображений за три минуты. Система может работать со всеми SQL-базами данных, использующими ODBC-протокол (Oracle, Sybase SQL, DB2, Informix).

Система FaceIT компании $\textit{Identix Inc}$ осуществляет распознавание людей при попадании изображения лица в поле зрения видеокамеры высокого разрешения. Разработки фирмы финансируются госдепартаментом США. Данная система проходит апробацию в аэропортах США. В прессе появлялись сообщения, что результаты тестирования нельзя назвать удовлетворительными, однако контракт с фирмой продолжен, и теперь акцент переносится на идентификацию по фотографиям. госдепартамент США собирается обязать гостей США иметь фото установленного образца, дабы облегчить распознавательным программам работу.

Из систем, разработанных в России и СНГ, можно рассмотреть продукцию фирмы $\textit{Asia-Software}$. Фирма предлагает FRS SDK — комплект разработчика, предназначенный для построения информационно-поисковых систем, связанных с распознаванием лиц, и ряд систем идентификации по изображениям лиц. Система базируется на алгоритмах распознавания и сравнения изображений. Основой этих алгоритмов является модифицированный метод анализа принципиальных компонент, заключающийся в вычислении максимально декореллированных коэффициентов, характеризующих входные образы человеческих лиц. На вход системы подается оцифрованное видеоизображение. Специальные алгоритмы определяют наличие изображения лица человека, выделяют его, определяют точное расположение зрачков, производят позиционирование и масштабирование. После этого происходит автоматическое кодирование выделенного изображения лица человека с целью определения основных характерных признаков. Размер полученного массива признаков составляет примерно $300$~байт, что позволяет строить идентификационные системы даже на однокристальных ЭВМ.

Характеристики биометрических систем.

Показателями надежности биометрических систем могут служить вероятности ошибок первого и второго рода. Ошибки первого рода определяют вероятность ложного отказа (FRR, False Rejection Rate) и возникают при отказе в доступе легальному пользователю системы. Ошибки же второго рода показывают вероятность ложного допуска (FAR, False Acceptance Rate) и появляются при предоставлении доступа постороннему лицу. FRR и FAR связаны обратной зависимостью. Современные биометрические системы имеют очень большой разброс этих характеристик.

Биометрическую систему также можно характеризовать уровнем равной вероятности ошибок первого и второго рода (EER, Equal Error Rates) — точкой, в которой вероятность ошибки первого рода равна вероятности ошибки второго рода. На основании EER можно делать выводы об относительных достоинствах и недостатках разных биометрических методов. Чем ниже уровень EER, тем выше качество системы.

Еще один параметр, влияющий на выбор и установку биометрической системы, — пропускная способность. Она характеризует время, которое требуется человеку для взаимодействия с данным биометрическим устройством.

Сортировать и сравнивать описанные выше биометрические методы по показаниям ошибок первого рода очень сложно, так как они сильно разнятся для одних и тех же методов из-за сильной зависимости от оборудования, на котором они реализованы.

По показателям ошибок второго рода общая сортировка методов биометрической аутентификации выглядит так (от лучших к худшим):

  1. радужная оболочка глаза, сетчатка глаза;
  2. отпечаток пальца, термография лица, форма ладони;
  3. форма лица, расположение вен на кисти руки и ладони;
  4. подпись;
  5. клавиатурный почерк;
  6. голос.

Можно сделать вывод, что, с одной стороны, статические методы идентификации существенно лучше динамических, а с другой стороны — существенно дороже.

Текущее состояние технологии и перспективы дальнейших разработок.

В настоящий момент общее состояние биометрических технологий в мире еще нельзя признать удовлетворительным. Скорее можно говорить о биометрии как о быстро развивающейся области исследований и приложений, в которой еще не удалось достичь требуемых показателей. Целый ряд серьезных проверок, проведенных в последнее время, показал недостаточную надежность таких систем.

Например, полицейское управление города Тампа, штат Флорида (США), после двух лет эксплуатации деинсталлировало за бесполезностью программное обеспечение опознания лиц, работавшее совместно с камерами наружного наблюдения. Сеть таких камер позволяла вести надзор за публикой в городском парке развлечений Айбор-сити. Предполагалось, что техника в комплекте с программой для сканирования/опознания лиц, подсоединенной к базе из 30 тысяч известных правонарушителей и сбежавших из дома детей, повысит эффективность работы полиции. Однако за два года система не дала ни единого успешного результата, будь то автоматическое опознание разыскиваемых или арест подозреваемых. Программное обеспечение было предоставлено компанией Identix, одним из ведущих в США поставщиков биометрических технологий опознания по лицу и отпечаткам пальцев.

Известен отчет японского криптографа Цутомо Мацумото, скомпрометировавшего более десятка систем опознания пользователя по отпечатку пальца. Недавно аналогичное обширное исследование было предпринято немецким компьютерным журналом «c»t». Выводы экспертов однозначны: биометрические системы для потребительского рынка пока не достигли того уровня, когда их можно рассматривать в качестве реальной альтернативы традиционным паролям. Так, систему опознания лиц FaceVACS-Logon немецкой фирмы $\textit{Cognitec}$ удается ввести в заблуждение, просто предъявив фотографию зарегистрированного пользователя. Для обмана более изощренного ПО, анализирующего характерные признаки живого человека (мимические движения лица) может быть успешно применен экран ноутбука, на котором демонстрируется видеоклип с записью лица. Несколько сложнее обмануть систему Authenticam BM-ET100 фирмы $\textit{Panasonic}$ для опознания радужной оболочки глаза, поскольку здесь инфракрасные датчики реагируют не только на характерный узор изображения радужки, но и на иную глубину расположения зрачка. Однако, если проделать небольшое отверстие на месте зрачка в фотоснимке глаза, куда при опознании заглядывает другой человек, систему удается обмануть. Что же касается систем опознания пользователя по отпечатку пальца с помощью емкостного сенсора на мышке или клавиатуре, то здесь самым распространенным способом обмана является повторное «оживление» уже имеющегося отпечатка, оставленного зарегистрированным пользователем. Для «реанимации» остаточного отпечатка иногда бывает достаточно просто подышать на сенсор, либо приложить к нему тонкий полиэтиленовый пакет, наполненный водой. Подобные трюки, в частности, весьма удачно опробованы на мышках ID Mouse фирмы $\textit{Siemens}$, оснащенных емкостным сенсором FingerTIP производства $\textit{Infineon}$. Наконец, «искусственный палец», отлитый в парафиновой форме из силикона, позволил исследователям одолеть все шесть протестированных дактилоскопических систем.

Однако, несмотря на общую негативную оценку современного состояния биометрических систем идентификации личности, во всем мире наблюдается тенденция к развитию исследований и разработок в области биометрии. При этом одной из основных тенденций последнего времени является постепенный перенос приоритетов с контактных на бесконтактные методы биометрического распознавания. Причиной этого явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, %то есть не только бесконтактно (дистанционно), но %и без специального сотрудничества (специального предъявления биометрических %признаков) со стороны идентифицируемых персон, в сложных условиях, в группе и в толпе. Созданию таких биометрических систем нового поколения препятствуют ряд специфических проблем, пока еще не имеющих адекватного решения.

Первая группа проблем связана с тем, что системы скрытного наблюдения с целью обеспечения безопасности должны работать в условиях естественного поведения человека, не предъявляющего специально свое лицо и не произносящего заранее известных ключевых фраз. В этом случае еще до решения задачи распознавания необходимо решить задачу обнаружения (определения местоположения, выделения человека в группе), да и сама задача распознавания лица и голоса в неконтролируемых условиях становится существенно сложнее. Вторая группа существующих здесь проблем связана с тем, что в случае задачи обеспечения безопасности (в отличие от задачи обеспечения контроля доступа) нет возможности опереться на сотрудничество идентифицируемой персоны даже на этапе обучения. Поэтому для обучения приходится использовать имеющиеся фрагментарные и разнородные аудио- и видеоматериалы самого различного качества и происхождения. Это еще более усложняет задачу обучения биометрической системы. Наконец, третья группа проблем связана с тем, что получаемые (с учетом перечисленных проблем) вероятности правильного распознавания и ложного обнаружения заданной персоны в естественной обстановке только по лицу или только по голосу оказываются существенно ниже показателей, требуемых для удовлетворительного функционирования ответственных систем обеспечения безопасности и контроля доступа. С этим связана необходимость использовать комплексирование результатов биометрического распознавания, полученного от разных источников информации.

Именно с решением указанных проблем могут быть связаны существенные прорывы в области биометрических технологий в ближайшие годы.

Биометрия в широком и узком смысле.

Таким образом, биометрические технологий идентификации представляют собой быстро развивающееся научно-техническое направление, в результатах которого остро нуждаются такие области применения, как системы охраны и контроля доступа, системы паспортного и визового контроля, системы предупреждения преступлений и идентификации преступников, системы контроля доступа, системы учета и сбора статистики посетителей, системы идентификации удаленных пользователей и пользователей интернета, верификации кредитных карточек, криминалистической экспертизы, контроля времени посещения на предприятиях и т. д.

Помимо описанных биометрических технологий аутентификации, область «биометрии в широком смысле» включает также ряд приложений, связанных с выделением и измерением различных биологических характеристик человеческого тела, жестов, движений и т. п., предназначенных не для персональной идентификации, а для использования в спортивных, медицинских, телекоммуникационных, развлекательных и других целях.

Кражи идентификационных данных вызывают все большую обеспокоенность в обществе — по данным Федеральной комиссии по торговле США, жертвами хищения идентифицирующих сведений ежегодно становятся миллионы, а «кража личности» стала самой распространенной жалобой потребителей. В цифровую эпоху традиционных методов аутентификации — паролей и удостоверений личности — уже недостаточно для борьбы с хищением идентификационных сведений и обеспечения безопасности. «Суррогатные репрезентации» личности легко забыть где-либо, потерять, угадать, украсть или передать.

Биометрические системы распознают людей на основе их анатомических особенностей (отпечатков пальцев, образа лица, рисунка линий ладони, радужной оболочки, голоса) или поведенческих черт (подписи, походки). Поскольку эти черты физически связаны с пользователем, биометрическое распознавание надежно в роли механизма, следящего, чтобы только те, у кого есть необходимые полномочия, могли попасть в здание, получить доступ к компьютерной системе или пересечь границу государства. Биометрические системы также обладают уникальными преимуществами — они не позволяют отречься от совершенной транзакции и дают возможность определить, когда индивидуум пользуется несколькими удостоверениями (например, паспортами) на разные имена. Таким образом, при грамотной реализации в соответствующих приложениях биометрические системы обеспечивают высокий уровень защищенности.

Правоохранительные органы уже больше века в своих расследованиях пользуются биометрической аутентификацией по отпечаткам пальцев, а в последние десятилетия происходит быстрый рост внедрения систем биометрического распознавания в правительственных и коммерческих организациях во всем мире. На рис. 1 показаны некоторые примеры. Хотя многие из этих внедрений весьма успешны, существуют опасения по поводу незащищенности биометрических систем и потенциальных нарушений приватности из-за несанкционированной публикации хранимых биометрических данных пользователей. Как и любой другой аутентификационный механизм, биометрическую систему может обойти опытный мошенник, располагающий достаточным временем и ресурсами. Важно развеивать эти опасения, чтобы завоевать доверие общества к биометрическим технологиям.

Принцип действия биометрической системы

Биометрическая система на этапе регистрации записывает образец биометрической черты пользователя с помощью датчика — например, снимает лицо на камеру. Затем из биометрического образца извлекаются индивидуальные черты — например, минуции (мелкие подробности линий пальца) — с помощью программного алгоритма экстракции черт (feature extractor). Система сохраняет извлеченные черты в качестве шаблона в базе данных наряду с другими идентификаторами, такими как имя или идентификационный номер. Для аутентификации пользователь предъявляет датчику еще один биометрический образец. Черты, извлеченные из него, представляют собой запрос, который система сравнивает с шаблоном заявленной личности с помощью алгоритма сопоставления. Он возвращает рейтинг соответствия, отражающий степень схожести между шаблоном и запросом. Система принимает заявление, только если рейтинг соответствия превышает заранее заданный порог.

Уязвимости биометрических систем

Биометрическая система уязвима для двух видов ошибок (рис. 2). Когда система не распознает легитимного пользователя, происходит отказ в обслуживании, а когда самозванец неверно идентифицируется в качестве авторизованного пользователя, говорят о вторжении. Для таких сбоев существует масса возможных причин, их можно поделить на естественные ограничения и атаки злоумышленников.

Естественные ограничения

В отличие от систем аутентификации по паролю, которые требуют точного соответствия двух алфавитно-цифровых строк, биометрическая аутентификационная система полагается на степень схожести двух биометрических образцов, а поскольку индивидуальные биометрические образцы, полученные в ходе регистрации и аутентификации, редко идентичны, то, как показано на рис. 3, биометрическая система может делать ошибки аутентификации двух видов. Ложное несоответствие происходит, когда два образца от одного и того же индивидуума имеют низкую схожесть и система не может их сопоставить. Ложное соответствие происходит, когда два образца от разных индивидуумов имеют высокое подобие и система некорректно объявляет их совпадающими. Ложное несоответствие ведет к отказу в обслуживании легитимного пользователя, тогда как ложное соответствие может привести к вторжению самозванца. Поскольку ему не надо применять какие-то специальные меры для обмана системы, такое вторжение называют атакой нулевого усилия. Большая часть исследований в области биометрии за последние пятьдесят лет была сосредоточена на повышении точности аутентификации — на минимизации ложных несоответствий и соответствий.

Атаки злоумышленников

Биометрическая система также может дать сбой в результате злоумышленных манипуляций, которые могут проводиться через инсайдеров, например сисадминов, либо путем прямой атаки на системную инфраструктуру. Злоумышленник может обойти биометрическую систему, если вступит в сговор с инсайдерами (или принудит их), либо воспользуется их халатностью (например, невыходом из системы после завершения транзакции), либо выполнит мошеннические манипуляции с процедурами регистрации и обработки исключений, которые изначально были разработаны для помощи авторизованным пользователям. Внешние злоумышленники также могут вызвать сбой в биометрической системе посредством прямых атак на пользовательский интерфейс (датчик), модули экстракции черт или сопоставления либо на соединения между модулями или базу шаблонов.

Примеры атак, направленных на системные модули и их межсоединения: трояны, «человек посередине» и атаки воспроизведения. Поскольку большинство видов таких атак также применимы к системам аутентификации по паролю, существует ряд контрмер наподобие криптографии, отметок времени и взаимной аутентификации, которые позволяют предотвратить или минимизировать эффект таких вторжений.

Две серьезные уязвимости, которые заслуживают отдельного внимания в контексте биометрической аутентификации: атаки подделки на пользовательский интерфейс и утечка из базы шаблонов. Эти две атаки имеют серьезное негативное влияние на защищенность биометрической системы.

Атака подделки состоит в предоставлении поддельной биометрической черты, не полученной от живого человека: пластилиновый палец, снимок или маска лица, реальный отрезанный палец легитимного пользователя.

Фундаментальный принцип биометрической аутентификации состоит в том, что, хотя сами биометрические признаки не являются секретом (можно тайно получить фото лица человека или отпечаток его пальца с предмета или поверхности), система тем не менее защищена, так как признак физически привязан к живому пользователю. Успешные атаки подделки нарушают это базовое предположение, тем самым серьезно подрывая защищенность системы.

Исследователи предложили немало методов определения живого состояния. Например, путем верификации физиологических характеристик пальцев или наблюдения за непроизвольными факторами, такими как моргание, можно удостовериться в том, что биометрическая особенность, зарегистрированная датчиком, действительно принадлежит живому человеку.

Утечка из базы шаблонов — это ситуация, когда информация о шаблоне легитимного пользователя становится доступной злоумышленнику. При этом повышается опасность подделки, так как злоумышленнику становится проще восстановить биометрический рисунок путем простого обратного инжиниринга шаблона (рис. 4). В отличие от паролей и физических удостоверений личности, краденый шаблон нельзя просто заменить новым, так как биометрические признаки существуют в единственном экземпляре. Краденые биометрические шаблоны также можно использовать для посторонних целей — например, для тайной слежки за человеком в различных системах или для получения приватной информации о его здоровье.

Защищенность биометрического шаблона

Важнейший фактор минимизации рисков безопасности и нарушения приватности, связанных с биометрическими системами, — защита биометрических шаблонов, хранящихся в базе данных системы. Хотя эти риски можно до некоторой степени уменьшить за счет децентрализованного хранения шаблонов, например на смарткарте, которую носит с собой пользователь, подобные решения нецелесообразны в системах типа US-VISIT и Aadhaar, которым нужны средства дедупликации.

Сегодня существует немало методов защиты паролей (в их числе шифрование, хэширование и генерация ключей), однако базируются они на предположении, что пароли, которые пользователь вводит на этапе регистрации и аутентификации, идентичны.

Требования к защищенности шаблона

Основная трудность при разработке схем защиты биометрического шаблона состоит в том, чтобы достигнуть приемлемого компромисса между тремя требованиями.

Необратимость. Злоумышленнику должно быть затруднительно вычислительным путем восстановить биометрические черты из сохраненного шаблона либо создать физические подделки биометрического признака.

Различимость. Схема защиты шаблона не должна ухудшать точность аутентификации биометрической системой.

Отменяемость. Должна быть возможность из одних и тех же биометрических данных создать несколько защищенных шаблонов, которые нельзя будет связать с этими данными. Это свойство не только позволяет биометрической системе отзывать и выдавать новые биометрические шаблоны в случае компрометации базы данных, но и предотвращает перекрестное сопоставление между базами данных, за счет чего сохраняется приватность данных о пользователе.

Методы защиты шаблонов

Имеется два общих принципа защиты биометрических шаблонов: трансформация биометрических черт и биометрические криптосистемы.

В случае трансформации биометрических черт (рис. 5, а ) защищенный шаблон получен за счет применения необратимой функции трансформации к оригиналу шаблона. Такая трансформация обычно основана на индивидуальных характеристиках пользователя. В процессе аутентификации система применяет ту же функцию трансформации к запросу, и сопоставление происходит уже для трансформированного образца.

Биометрические криптосистемы (рис. 5, б ) хранят только часть информации, полученной из биометрического шаблона, — эта часть называется защищенным эскизом (secure sketch). Хотя его самого недостаточно для восстановления оригинального шаблона, он все же содержит необходимое количество данных для восстановления шаблона при наличии другого биометрического образца, похожего на полученный при регистрации.

Защищенный эскиз обычно получают путем связывания биометрического шаблона с криптографическим ключом, однако защищенный эскиз — это не то же самое, что биометрический шаблон, зашифрованный с помощью стандартных методов. При обычной криптографии зашифрованный шаблон и ключ расшифровки — это две разные единицы, и шаблон защищен, только если защищен и ключ. В защищенном шаблоне же инкапсулируются одновременно и биометрический шаблон, и криптографический ключ. Ни ключ, ни шаблон нельзя восстановить, имея только защищенный эскиз. Когда системе предоставляют биометрический запрос, достаточно похожий на шаблон, она может восстановить и оригинальный шаблон, и криптоключ с помощью стандартных методов распознавания ошибок.

Исследователи предложили два основных метода генерации защищенного эскиза: нечеткое обязательство (fuzzy commitment) и нечеткий сейф (fuzzy vault). Первый можно использовать для защиты биометрических шаблонов, представленных в виде двоичных строк фиксированной длины. Второй полезен для защиты шаблонов, представленных в виде наборов точек.

За и против

Трансформация биометрических черт и биометрические криптосистемы имеют свои «за» и «против».

Сопоставление в схеме с трансформацией черт часто происходит напрямую, и возможна даже разработка функций трансформации, не меняющих характеристик исходного пространства признаков. Однако бывает сложно создать удачную функцию трансформации, необратимую и терпимую к неизбежному изменению биометрических черт пользователя со временем.

Хотя для биометрических систем существуют методы генерации защищенного эскиза, основанные на принципах теории информации, трудность состоит в том, чтобы представить эти биометрические черты в стандартизованных форматах данных наподобие двоичных строк и наборов точек. Поэтому одна из актуальных тем исследований — разработка алгоритмов, преобразующих оригинальный биометрический шаблон в такие форматы без потерь значащей информации.

Методы fuzzy commitment и fuzzy vault имеют и другие ограничения, в том числе неспособность генерировать много несвязанных шаблонов из одного и того же набора биометрических данных. Один из возможных способов преодоления этой проблемы — применение функции трансформации черт к биометрическому шаблону до того, как она будет защищена с помощью биометрической криптосистемы. Биометрические криптосистемы, которые объединяют трансформацию с генерацией защищенного эскиза, называют гибридными.

Головоломка приватности

Нерасторжимая связь между пользователями и их биометрическими чертами порождает обоснованные опасения по поводу возможности раскрытия персональных данных. В частности, знание информации о хранимых в базе биометрических шаблонах можно использовать для компрометации приватных сведений о пользователе. Схемы защиты шаблонов до некоторой степени могут снизить эту угрозу, однако многие сложные вопросы приватности лежат за рамками биометрических технологий. Кто владеет данными — индивидуум или провайдеры сервиса? Сообразно ли применение биометрии потребностям в безопасности в каждом конкретном случае? Например, следует ли требовать отпечаток пальца при покупке гамбургера в фастфуде или при доступе к коммерческому Web-сайту? Каков оптимальный компромисс между безопасностью приложения и приватностью? Например, следует ли разрешать правительствам, предприятиям и другим лицам пользоваться камерами наблюдения в публичных местах, чтобы тайно следить за законной деятельностью пользователей?

На сегодня удачных практических решений для подобных вопросов нет.

Биометрическое распознавание обеспечивает более надежную аутентификацию пользователей, чем пароли и удостоверяющие личность документы, и является единственным способом обнаружения самозванцев. Хотя биометрические системы не являются абсолютно надежными, исследователи сделали значительные шаги вперед по пути идентификации уязвимостей и разработки мер противодействия им. Новые алгоритмы для защиты биометрических шаблонов частично устраняют опасения по поводу защищенности систем и приватности данных пользователя, но понадобятся дополнительные усовершенствования, прежде чем подобные методы будут готовы к применению в реальных условиях.

Анил Джейн ([email protected]) — профессор факультета компьютерных наук и инженерного проектирования Мичиганского университета, Картик Нандакумар ([email protected]) — научный сотрудник сингапурского Института инфокоммуникационных исследований.

Anil K. Jain, Kathik Nandakumar, Biometric Authentication: System Security and User Privacy. IEEE Computer, November 2012, IEEE Computer Society. All rights reserved. Reprinted with permission.

Аннотация.

В статье приведены основные биометрические параметры. Рассмотрены методы идентификации, нашедшие широкое применение в России. Биометрическая идентификация способна решить задачу объединения всех существующих паролей пользователя к одному и применять его повсеместно. Процесс извлечения свойств отпечатка пальцев начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Распознавание лиц — это самый приемлемый обществом метод биометрической идентификации. Идентификации личности по радужной оболочке глаза состоит из получения изображения, на котором локализуется радужная оболочка и составляется её код. В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. Идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Беcконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.


Ключевые слова: биометрические параметры, идентификация личности, отпечатки пальцев, распознавание лиц, радужная оболочка, биометрическая идентификация, алгоритм, базы данных, биометрические методы, пароль

Понравилась статья? Поделиться с друзьями:
Добавить комментарий