Андрей Борзенко
Чтобы установить личность задержанного,
полицейскому было достаточно
просто заглянуть ему в глаза.
Из газет
По мере развития компьютерных сетей и расширения сфер автоматизации ценность информации неуклонно возрастает. Государственные секреты, наукоемкие ноу-хау, коммерческие, юридические и врачебные тайны все чаще доверяются компьютеру, который, как правило, подключен к локальным и корпоративным сетям. Популярность глобальной сети Интернет, с одной стороны, открывает огромные возможности для электронной коммерции, но, с другой стороны, создает потребность в более надежных средствах безопасности для защиты корпоративных данных от доступа извне. В настоящее время все больше компаний сталкиваются с необходимостью предотвратить несанкционированный доступ к своим системам и защитить транзакции в электронном бизнесе.
Практически до конца 90-х годов основным способом персонификации пользователя было указание его сетевого имени и пароля. Справедливости ради нужно отметить, что подобного подхода по-прежнему придерживаются во многих учреждениях и организациях. Опасности, связанные с использованием пароля, хорошо известны: пароли забывают, хранят в неподходящем месте, наконец, их могут просто украсть. Некоторые пользователи записывают пароль на бумаге и держат эти записи рядом со своими рабочими станциями. Как сообщают группы информационных технологий многих компаний, большая часть звонков в службу поддержки связана с забытыми или утратившими силу паролями.
Известно, что систему можно обмануть, представившись чужим именем. Для этого необходимо лишь знать некую идентифицирующую информацию, которой, с точки зрения системы безопасности, обладает один-единственный человек. Злоумышленник, выдав себя за сотрудника компании, получает в свое распоряжение все ресурсы, доступные данному пользователю в соответствии с его полномочиями и должностными обязанностями. Результатом могут стать различные противоправные действия, начиная от кражи информации и заканчивая выводом из строя всего информационного комплекса.
Разработчики традиционных устройств идентификации уже столкнулись с тем, что стандартные методы во многом устарели. Проблема, в частности, состоит в том, что общепринятое разделение методов контроля физического доступа и контроля доступа к информации более несостоятельно. Ведь для получения доступа к серверу иногда совсем не обязательно входить в помещение, где он стоит. Причиной тому - ставшая всеобъемлющей концепция распределенных вычислений, объединяющая и технологию клиент-сервер, и Интернет. Для решения этой проблемы требуются радикально новые методы, основанные на новой идеологии. Проведенные исследования показывают, что ущерб в случаях несанкционированного доступа к данным компаний может составлять миллионы долларов.
Есть ли выход из этой ситуации? Оказывается, есть, и уже давно. Просто для доступа к системе нужно применять такие методы идентификации, которые не работают в отрыве от их носителя. Этому требованию отвечают биометрические характеристики человеческого организма. Современные биометрические технологии позволяют идентифицировать личность по физиологическим и психологическим признакам. Кстати, биометрия известна человечеству очень давно - еще древние египтяне использовали идентификацию по росту.
Основы биометрической идентификации
Главная цель биометрической идентификации заключается в создании такой системы регистрации, которая крайне редко отказывала бы в доступе легитимным пользователям и в то же время полностью исключала несанкционированный вход в компьютерные хранилища информации. По сравнению с паролями и карточками такая система обеспечивает гораздо более надежную защиту: ведь собственное тело нельзя ни забыть, ни потерять. Биометрическое распознавание объекта основано на сравнении физиологических или психологических особенностей этого объекта с его характеристиками, хранящимися в базе данных системы. Подобный процесс постоянно происходит в мозгу человека, позволяя узнавать, например, своих близких и отличать их от незнакомых людей.
Биометрические технологии можно разделить на две большие категории - физиологические и психологические (поведенческие). В первом случае анализируются такие признаки, как черты лица, структура глаза (сетчатки или радужной оболочки), параметры пальцев (папиллярные линии, рельеф, длина суставов и т.д.), ладонь (ее отпечаток или топография), форма руки, рисунок вен на запястье или тепловая картина. Психологические характеристики - это голос человека, особенности его подписи, динамические параметры письма и особенности ввода текста с клавиатуры.
На выбор метода, наиболее подходящего в той или иной ситуации, влияет целый ряд факторов. Предлагаемые технологии отличаются по эффективности, причем их стоимость в большинстве случаев прямо пропорциональна уровню надежности. Так, применение специализированной аппаратуры иной раз повышает стоимость каждого рабочего места на тысячи долларов.
Физиологические особенности, например, папиллярный узор пальца, геометрия ладони или рисунок (модель) радужной оболочки глаза - это постоянные физические характеристики человека. Данный тип измерений (проверки) практически неизменен, так же, как и сами физиологические характеристики. Поведенческие же характеристики, например, подпись, голос или клавиатурный почерк, находятся под влиянием как управляемых действий, так и менее управляемых психологических факторов. Поскольку поведенческие характеристики могут изменяться с течением времени, зарегистрированный биометрический образец должен при каждом использовании обновляться. Биометрия, основанная на поведенческих характеристиках, дешевле и представляет меньшую угрозу для пользователей; зато идентификация личности по физиологическим чертам более точна и дает большую безопасность. В любом случае оба метода обеспечивают значительно более высокий уровень идентификации, чем пароли или карты.
Важно отметить, что все биометрические средства аутентификации в той или иной форме используют статистические свойства некоторых качеств индивида. Это означает, что результаты их применения носят вероятностный характер и будут изменяться от раза к разу. Кроме того, все подобные средства не застрахованы от ошибок аутентификации. Существует два рода ошибок: ложный отказ (не признали своего) и ложный допуск (пропустили чужого). Надо сказать, что тема эта в теории вероятностей хорошо изучена еще со времен развития радиолокации. Влияние ошибок на процесс аутентификации оценивается с помощью сравнения средних вероятностей соответственно ложного отказа и ложного допуска. Как показывает практика, эти две вероятности связаны обратной зависимостью, т.е. при попытке ужесточить контроль повышается вероятность не пустить в систему своего, и наоборот. Таким образом, в каждом случае необходимо искать некий компромисс. Тем не менее, даже по самым пессимистичным оценкам экспертов, биометрия выигрывает при всех сравнениях, поскольку она значительно надежнее, чем другие существующие методы аутентификации.
Кроме эффективности и цены, компаниям следует учитывать также реакцию служащих на биометрические средства. Идеальная система должна быть простой в применении, быстрой, ненавязчивой, удобной и приемлемой с социальной точки зрения. Однако ничего идеального в природе нет, и каждая из разработанных технологий лишь частично соответствует всему набору требований. Но даже самые неудобные и непопулярные средства (например, идентификация по сетчатке, которой пользователи всячески стараются избежать, защищая свои глаза) приносят нанимателю несомненную пользу: они демонстрируют должное внимание компании к вопросам безопасности.
Развитие биометрических устройств идет по нескольким направлениям, но общие для них черты - это непревзойденный на сегодня уровень безопасности, отсутствие традиционных недостатков парольных и карточных систем защиты и высокая надежность. Успехи биометрических технологий связаны пока главным образом с организациями, где они внедряются в приказном порядке, например, для контроля доступа в охраняемые зоны или идентификации лиц, привлекших внимание правоохранительных органов. Корпоративные пользователи, похоже, еще не осознали потенциальных возможностей биометрии в полной мере. Часто менеджеры компаний не рискуют развертывать у себя биометрические системы, опасаясь, что из-за возможных неточностей в измерениях пользователи будут получать отказы в доступе, на который у них есть права. Тем не менее новые технологии все активнее проникают на корпоративный рынок. Уже сегодня существуют десятки тысяч компьютеризованных мест, хранилищ, исследовательских лабораторий, банков крови, банкоматов, военных сооружений, доступ к которым контролируется устройствами, сканирующими уникальные физиологические или поведенческие характеристики индивидуума.
Методы аутентификации
Как известно, аутентификация подразумевает проверку подлинности субъекта, которым в принципе может быть не только человек, но и программный процесс. Вообще говоря, аутентификация индивидов возможна за счет предъявления информации, хранящейся в различной форме. Это может быть:
- пароль, личный номер, криптографический ключ, сетевой адрес компьютера в сети;
- смарт-карта, электронный ключ;
- внешность, голос, рисунок радужной оболочки глаз, отпечатки пальцев и другие биометрические характеристики пользователя.
Аутентификация позволяет обоснованно и достоверно разграничить права доступа к информации, находящейся в общем пользовании. Однако, с другой стороны, возникает проблема обеспечения целостности и достоверности этой информации. Пользователь должен быть уверен, что получает доступ к информации из заслуживающего доверия источника и что данная информации не модифицировалась без соответствующих санкций.
Поиск совпадения "один к одному" (по одному атрибуту) называется верификацией. Этот способ отличается высокой скоростью и предъявляет минимальные требования к вычислительной мощности компьютера. А вот поиск "один ко многим" носит название идентификации. Реализовать подобный алгоритм обычно не только сложно, но и дорого. Сегодня на рынок выходят биометрические устройства, использующие для верификации и идентификации пользователей компьютеров такие индивидуальные характеристики человека, как отпечатки пальцев, черты лица, радужную оболочку и сетчатку глаза, форму ладони, особенности голоса, речи и подписи. На стадии тестирования и опытной эксплуатации находятся системы, позволяющие выполнять аутентификацию пользователей по тепловому полю лица, рисунку кровеносных сосудов руки, запаху тела, температуре кожи и даже по форме ушей.
Любая биометрическая система позволяет распознавать некий шаблон и устанавливать аутентичность конкретных физиологических или поведенческих характеристик пользователя. Логически биометрическую систему можно разделить на два модуля: модуль регистрации и модуль идентификации. Первый отвечает за то, чтобы обучить систему идентифицировать конкретного человека. На этапе регистрации биометрические датчики сканируют необходимые физиологические или поведенческие характеристики человека и создают их цифровое представление. Специальный модуль обрабатывает это представление с тем, чтобы выделить характерные особенности и сгенерировать более компактное и выразительное представление, называемое шаблоном. Для изображения лица такими характерными особенностями могут стать размер и относительное расположение глаз, носа и рта. Шаблон для каждого пользователя хранится в базе данных биометрической системы.
Модуль идентификации отвечает за распознавание человека. На этапе идентификации биометрический датчик снимает характеристики человека, которого нужно идентифицировать, и преобразует эти характеристики в тот же цифровой формат, в котором хранится шаблон. Полученный шаблон сравнивается с хранимым, чтобы определить, соответствуют ли эти шаблоны друг другу.
Например, в ОС Microsoft Windows для аутентификации пользователя требуется два объекта - имя пользователя и пароль. При использовании в процессе аутентификации отпечатков пальцев имя пользователя вводится для регистрации, а отпечаток пальца заменяет пароль (рис. 1). Эта технология использует имя пользователя в качестве указателя для получения учетной записи пользователя и проверки соответствия "один к одному" между шаблоном считанного при регистрации отпечатка и шаблоном, ранее сохраненным для данного имени пользователя. Во втором случае введенный при регистрации шаблон отпечатка пальца необходимо сопоставить со всем набором сохраненных шаблонов.
При выборе способа аутентификации имеет смысл учитывать несколько основных факторов:
- ценность информации;
- стоимость программно-аппаратного обеспечения аутентификации;
- производительность системы;
- отношение пользователей к применяемым методам аутентификации;
- специфику (предназначение) защищаемого информационного комплекса.
Очевидно, что стоимость, а следовательно, качество и надежность средств аутентификации должны быть напрямую связаны с важностью информации. Кроме того, повышение производительности комплекса, как правило, также сопровождается его удорожанием.
Отпечатки пальцев
В последние годы процесс идентификации личности по отпечатку пальца обратил на себя внимание как биометрическая технология, которая, вполне вероятно, будет наиболее широко использоваться в будущем. По оценкам Gartner Group (http://www.gartnergroup.com), данная технология доминирует на корпоративном рынке и в ближайшее время конкуренцию ей может составить лишь технология опознавания по радужной оболочке глаза.
Правительственные и гражданские организации во всем мире уже давно используют отпечатки пальцев в качестве основного метода установления личности. Кроме того, отпечатки - это наиболее точная, дружественная к пользователю и экономичная биометрическая характеристика для применения в компьютерной системе идентификации. Данной технологией в США пользуются, например, отделы транспортных средств администраций ряда штатов, MasterCard, ФБР, Секретная служба, Агентство национальной безопасности, министерства финансов и обороны и т.д. Устраняя потребность в паролях для пользователей, технология распознавания отпечатков пальцев сокращает число обращений в службу поддержки и снижает расходы на сетевое администрирование.
Обычно системы распознавания отпечатков пальцев разделяют на два типа: для идентификации - AFIS (Automatic Fingerprint Identification Systems) и для верификации. В первом случае используются отпечатки всех десяти пальцев. Подобные системы находят широкое применение в судебных органах. Устройства верификации обычно оперируют с информацией об отпечатках одного, реже нескольких пальцев. Сканирующие устройства бывают, как правило, трех типов: оптические, ультразвуковые и на основе микрочипа.
Преимущества доступа по отпечатку пальца - простота использования, удобство и надежность. Известны два основополагающих алгоритма распознавания отпечатков пальцев: по отдельным деталям (характерным точкам) и по рельефу всей поверхности пальца. Соответственно в первом случае устройство регистрирует только некоторые участки, уникальные для конкретного отпечатка, и определяет их взаимное расположение. Во втором случае обрабатывается изображение всего отпечатка. В современных системах все чаще используется комбинация этих двух способов. Это позволяет избежать недостатков обоих и повысить достоверность идентификации. Единовременная регистрация отпечатка пальца человека на оптическом сканере занимает немного времени. Крошечная CCD-камера, выполненная в виде отдельного устройства или встроенная в клавиатуру, делает снимок отпечатка пальца. Затем с помощью специальных алгоритмов полученное изображение преобразуется в уникальный "шаблон" - карту микроточек отпечатка, которые определяются имеющимися в нем разрывами и пересечениями линий. Этот шаблон (а не сам отпечаток) затем шифруется и записывается в базу данных для аутентификации сетевых пользователей. В одном шаблоне хранится от нескольких десятков до сотен микроточек. При этом пользователи могут не беспокоиться о неприкосновенности своей частной жизни, поскольку сам отпечаток пальца не сохраняется и не может быть воссоздан по микроточкам.
Преимущество ультразвукового сканирования - возможность определения требуемых характеристик на грязных пальцах и даже через тонкие резиновые перчатки. Стоит отметить, что современные системы распознавания нельзя обмануть даже свежеотрубленными пальцами (микрочип измеряет физические параметры кожи). Разработкой подобных систем занимаются более 50 различных производителей.
Использование отпечатка пальца для идентификации личности - самый удобный из всех биометрических методов. Вероятность ошибки при идентификации пользователя намного меньше в сравнении с другими методами биометрии. Качество распознавания отпечатка и возможность его правильной обработки алгоритмом сильно зависят от состояния поверхности пальца и его положения относительно сканирующего элемента. Различные системы предъявляют разные требования к этим двум параметрам. Характер требований зависит, в частности, от применяемого алгоритма. К примеру, распознавание по характерным точкам дает сильный уровень шума при плохом состоянии поверхности пальца. Распознавание по всей поверхности лишено этого недостатка, но для него требуется очень точно размещать палец на сканирующем элементе. Устройство идентификации по отпечатку пальца (сканер, рис. 2) не требует много места и может быть вмонтировано в указательный манипулятор (мышь) или клавиатуру.
Геометрия лица
Идентификация человека по лицу в обычной жизни, без всяких сомнений, - самый распространенный способ распознавания. Что касается ее технической реализации, она представляет собой более сложную (с математической точки зрения) задачу, нежели распознавание отпечатков пальцев, и, кроме того, требует более дорогостоящей аппаратуры (нужна цифровая видео- или фотокамера и плата захвата видеоизображения). У этого метода есть один существенный плюс: для хранения данных об одном образце идентификационного шаблона требуется совсем немного памяти. А все потому, что, как выяснилось, человеческое лицо можно "разобрать" на относительно небольшое количество участков, неизменных у всех людей. Например, для вычисления уникального шаблона, соответствующего конкретному человеку, требуется всего от 12 до 40 характерных участков.
Обычно камера устанавливается на расстоянии в несколько десятков сантиметров от объекта. Получив изображение, система анализирует различные параметры лица (например, расстояние между глазами и носом). Большинство алгоритмов позволяет компенсировать наличие у исследуемого индивида очков, шляпы и бороды. Для этой цели обычно используется сканирование лица в инфракрасном диапазоне. Было бы наивно предполагать, что подобные системы дают очень точный результат. Несмотря на это, в ряде стран они довольно успешно используются для верификации кассиров и пользователей депозитных сейфов.
Геометрия руки
Наряду с системами для оценки геометрии лица существует оборудование для распознавания очертаний ладоней рук. При этом оценивается более 90 различных характеристик, включая размеры самой ладони (три измерения), длину и ширину пальцев, очертания суставов и т.п. В настоящее время идентификация пользователей по геометрии руки используется в законодательных органах, международных аэропортах, больницах, иммиграционных службах и т.д. Преимущества идентификации по геометрии ладони сравнимы с плюсами идентификации по отпечатку пальца в вопросе надежности, хотя устройство для считывания отпечатков ладоней занимает больше места.
Радужная оболочка глаза
Довольно надежное распознавание обеспечивают системы, анализирующие рисунок радужной оболочки человеческого глаза. Дело в том, что эта характеристика довольно стабильна, не меняется практически в течение всей жизни человека, невосприимчива к загрязнению и ранам. Заметим также, что радужки правого и левого глаза по рисунку существенно различаются.
Обычно различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.
Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза можно отсканировать даже на расстоянии менее метра, благодаря чему сканеры для радужной оболочки пригодны для банкоматов.
Сетчатка глаза
Метод идентификации по сетчатке глаза получил практическое применение сравнительно недавно - где-то в середине 50-х годов теперь уже прошедшего XX века. Именно тогда было доказано, что даже у близнецов рисунок кровеносных сосудов сетчатки не совпадает. Для того, чтобы зарегистрироваться в специальном устройстве, достаточно смотреть в глазок камеры менее минуты. За это время система успевает подсветить сетчатку и получить отраженный сигнал. Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен первоначальных характерных точек, информация о которых усредняется и сохраняется в кодированном файле. К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякий человек отважится посмотреть в неведомое темное отверстие, где что-то светит в глаз. К тому же надо следить за положением глаза относительно отверстия, поскольку подобные системы, как правило, чувствительны к неправильной ориентации сетчатки. Сканеры для сетчатки глаза получили большое распространение при организации доступа к сверхсекретным системам, поскольку гарантируют один из самых низких процентов отказа в доступе зарегистрированных пользователей и почти нулевой процент ошибок.
Голос и речь
Многие фирмы выпускают программное обеспечение, способное идентифицировать человека по голосу. Здесь оцениваются такие параметры, как высота тона, модуляция, интонация и т.п. В отличие от распознавания внешности, данный метод не требует дорогостоящей аппаратуры - достаточно лишь звуковой платы и микрофона.
Идентификация по голосу удобный, но не столь надежный способ, как другие биометрические методы. Например, у простуженного человека могут возникнуть трудности при использовании таких систем. Голос формируется из комбинации физиологических и поведенческих факторов, поэтому основная проблема, связанная с этим биометрическим подходом, - точность идентификации. В настоящее время идентификация по голосу используется для управления доступом в помещение средней степени безопасности.
Подпись
Как оказалось, подпись - такой же уникальный атрибут человека, как и его физиологические характеристики. Кроме того, это и более привычный для любого человека метод идентификации, поскольку он, в отличие от снятия отпечатков пальцев, не ассоциируется с криминальной сферой. Одна из перспективных технологий аутентификации основана на уникальности биометрических характеристик движения человеческой руки во время письма. Обычно выделяют два способа обработки данных о подписи: простое сравнение с образцом и динамическую верификацию. Первый весьма ненадежен, так как основан на обычном сравнении введенной подписи с хранящимися в базе данных графическими образцами. Из-за того, что подпись не может быть всегда одинаковой, этот метод дает большой процент ошибок. Способ динамической верификации требует намного более сложных вычислений и позволяет в реальном времени фиксировать параметры процесса подписи, такие как скорость движения руки на разных участках, сила давления и длительность различных этапов подписи. Это дает гарантии того, что подпись не сможет подделать даже опытный графолог, поскольку никто не в состоянии в точности скопировать поведение руки владельца подписи.
Пользователь, используя стандартный дигитайзер и ручку, имитирует свою обычную подпись, а система считывает параметры движения и сверяет их с теми, что были заранее введены в базу данных. При совпадении образа подписи с эталоном система прикрепляет к подписываемому документу информацию, включающую имя пользователя, адрес его электронной почты, должность, текущее время и дату, параметры подписи, содержащие несколько десятков характеристик динамики движения (направление, скорость, ускорение) и другие. Эти данные шифруются, затем для них вычисляется контрольная сумма, и далее все это шифруется еще раз, образуя так называемую биометрическую метку. Для настройки системы вновь зарегистрированный пользователь от пяти до десяти раз выполняет процедуру подписания документа, что позволяет получить усредненные показатели и доверительный интервал. Впервые данную технологию использовала компания PenOp.
Идентификацию по подписи нельзя использовать повсюду - в частности, этот метод не подходит для ограничения доступа в помещения или для доступа в компьютерные сети. Однако в некоторых областях, например в банковской сфере, а также всюду, где происходит оформление важных документов, проверка правильности подписи может стать наиболее эффективным, а главное -- необременительным и незаметным способом. До сих пор финансовое сообщество не спешило принимать автоматизированные методы идентификации подписи для кредитных карточек и проверки заявления, потому что подписи все еще слишком легко подделать. Это препятствует внедрению идентификации личности по подписи в высокотехнологичные системы безопасности.
Перспективы
Хотелось бы отметить, что наибольшую эффективность защиты обеспечивают системы, в которых биометрические системы сочетаются с другими аппаратными средствами аутентификации, например смарт-картами. Комбинируя различные способы биометрической и аппаратной аутентификации, можно получить весьма надежную систему защиты (что косвенно подтверждается большим интересом, который проявляют к этим технологиям ведущие производители).
Заметим, что смарт-карты образуют один из самых крупных и быстрорастущих сегментов рынка электронных продуктов для пользователей. По прогнозам фирмы Dataquest (http://www.dataquest.com), к следующему году объем продаж смарт-карт превысит полмиллиарда долларов. Применение смарт-карт требует наличия на каждом рабочем месте специального считывающего (терминального) устройства, подключенного к компьютеру, которое исключает необходимость вовлечения пользователя в процесс взаимодействия карты и сервера аутентификации. Собственно смарт-карта обеспечивает два уровня аутентификации. Для того чтобы система заработала, пользователь должен вставить смарт-карту в считывающее устройство, а затем правильно ввести личный идентификационный номер. На российском рынке комплексные решения, сочетающие идентификацию по отпечаткам пальцев и использование смарт-карт (рис. 3), предлагают, например, компании Compaq (http://www.compaq.ru) и Fujitsu-Siemens (http://www.fujitsu-siemens.ru).
Рис. 3. Комбинированная система со сканером и смарт-картой. |
Кроме крупных компьютерных компаний, таких как Fujitsu-Siemens, Motorola, Sony, Unisys, разработкой биометрических технологий в настоящее время занимаются преимущественно небольшие частные компании, которые объединились в консорциум по биометрии - Biometric Consortium (http://www.biometrics.org). Одно из наиболее обнадеживающих свидетельств того, что биометрия наконец вливается в основное русло ИТ-индустрии, - создание интерфейса прикладного программирования BioAPI (Biometrics API). За этой разработкой стоит консорциум производителей, сформированный в 1998 г. корпорациями Compaq, IBM, Identicator Technology, Microsoft, Miros и Novell специально для выработки стандартизованной спецификации, поддерживающей существующие биометрические технологии, которую можно было бы внедрить в операционные системы и прикладное ПО. В консорциум BioAPI сегодня входят 78 крупных государственных и частных компаний.
Теперь корпоративные клиенты могут использовать биометрические продукты в рамках стандартных компьютерных и сетевых технологий, избежав, таким образом, значительных материальных и временных затрат на интеграцию всех компонентов системы. Стандартные API дают доступ к широкому спектру биометрических устройств и программных продуктов, а также позволяют совместно применять продукты нескольких поставщиков.
В этом году правительство США уже объявило о внедрении в государственных учреждениях открытого стандарта BioAPI. Нововведения коснутся в первую очередь министерства обороны США, где для нескольких миллионов военных и гражданских сотрудников предполагается ввести новые смарт-карты, хранящие отпечатки пальцев и образец подписи владельца.
По мнению ряда аналитиков, биометрические технологии развиваются пока достаточно медленно, однако недалеко то время, когда не только настольные и портативные компьютеры, но и мобильные телефоны будут немыслимы без подобных средств аутентификации. Большие ожидания связаны с поддержкой перспективных биометрических технологий операционной системой Microsoft Windows.
В последние годы во всем мире наблюдается все возрастающий интерес к методам распознавания и идентификации личности. Основные пути и способы решения этих задач лежат в области разработки биометрических систем. В биометрических системах для распознавания человека используется совокупность биометрических характеристик, основанных на биологических особенностях человеческого тела. В качестве таких биометрических характеристик могут выступать: голос, почерк, отпечатки пальцев, геометрия кисти руки, рисунок сетчатки или радужной оболочки глаза, лицо и ДНК.}
Биометрическая защита более эффективна в сравнении с такими методами, как использование паролей, PIN-кодов, смарт-карт, жетонов (tokens) или технологии PKI (инфраструктура открытых ключей), поскольку биометрия позволяет идентифицировать именно конкретного человека, а не устройство. Традиционные методы защиты не исключают возможности потери или кражи информации, вследствие чего она становится доступной незаконным пользователям. Уникальный биометрический идентификатор, каковым является, например, отпечаток пальца или изображение лица, служит ключом, который невозможно потерять. Биометрическая система безопасности позволяет отказаться от парольной защиты либо служит для ее усиления.
Одной из основных причин, которые существенно повысили значимость автоматической обработки и анализа биометрической информации, явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, то есть не только бесконтактно (дистанционно), но и без специального сотрудничества (специального предъявления биометрических признаков) со стороны идентифицируемых персон.
В настоящее время существует множество методов биометрической аутентификации, которые делятся на две основные группы - статические и динамические методы.
Статические методы биометрической аутентификации основываются на физиологической (статической) характеристике человека, то есть уникальной характеристике, данной ему от рождения и неотъемлемой от него. К этой группе относятся следующие методы аутентификации.
- $\textit{По отпечатку пальца.}$ В основе этого метода лежит уникальность для каждого человека рисунка папиллярных узоров на пальцах. Отпечаток пальца, полученный с помощью специального сканера, преобразуется в цифровой код (свертку) и сравнивается с ранее введенным эталоном. Данная технология является самой распространенной по сравнению с другими методами биометрической аутентификации.
- $\textit{По форме ладони.}$ Данный метод построен на геометрии кисти руки. С помощью специального устройства, состоящего из камеры и нескольких подсвечивающих диодов (включаясь по очереди, они дают разные проекции ладони), строится трехмерный образ кисти руки, по которому формируется свертка и распознается человек.
- $\textit{По расположению вен на лицевой стороне ладони.}$ С помощь инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки, полученная картинка обрабатывается, и по схеме расположения вен формируется цифровая свертка.
- $\textit{По сетчатке глаза.}$ Вернее, это способ идентификации по рисунку кровеносных сосудов глазного дна. Для того чтобы этот рисунок стал виден, человеку нужно посмотреть на удаленную световую точку, при этом подсвеченное глазное дно сканируется специальной камерой.
- $\textit{По радужной оболочке глаза.}$ Рисунок радужной оболочки глаза также является уникальной характеристикой человека, причем для ее сканирования достаточно портативной камеры со специализированный программным обеспечением, позволяющим захватывать изображение части лица, из которого выделяется изображение глаза, из которого в свою очередь выделяется рисунок радужной оболочки, по которому строится цифровой код для идентификации человека.
- $\textit{По изображению или форме лица.}$ В данном методе идентификации строится двумерный или трехмерный образ лица человека. На лице выделяются контуры бровей, глаз, носа, губ и т. д., вычисляется расстояние между ними и строится не просто образ, а еще множество его вариантов на случаи поворота лица, наклона, изменения выражения. Количество образов варьируется в зависимости от целей использования данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т. д.).
- $\textit{По термограмме лица}$. В основе данного способа аутентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы используются специальные камеры инфракрасного диапазона. В отличие от предыдущего, этот метод позволяет различать даже близнецов.
- $\textit{По ДНК}$. Преимущества данного способы очевидны, однако используемые в настоящее время методы получения и обработки ДНК работают настолько долго, что такие системы используются только для специализированных экспертиз.
- $\textit{Другие методы}$. Существуют еще такие уникальные способы - как идентификация по подногтевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела и т. д.
Как видно, большинство биометрических технологий данной группы связано с анализом изображений и реализуется теми или иными методами компьютерного зрения.
Динамические методы биометрической аутентификации основываются на поведенческой (динамической) характеристике человека, то есть построены на особенностях, характерных для подсознательных движений в процессе воспроизведения какого-либо действия. Методы аутентификации этой группы таковы.
1. $\textit{По рукописному почерку.}$ Как правило, для этого вида идентификации человека используется его роспись (иногда написание кодового слова). Цифровой код идентификации формируется в зависимости от необходимой степени защиты и наличия оборудования (графический планшет, экран карманного компьютера Palm и т. д.) двух типов:
По самой росписи, то есть для идентификации используется просто степень совпадения двух картинок;
По росписи и динамическим характеристикам написания, то есть для идентификации строится свертка, в которую входит информация по непосредственно подписи, временн ым характеристикам нанесения росписи и статистическим характеристикам динамики нажима на поверхность.
2. $\textit{По клавиатурному почерку.}$ Метод в целом аналогичен вышеописанному, но вместо росписи используется некое кодовое слово (когда для этого используется личный пароль пользователя, такую аутентификацию называют двухфакторной), и не нужно никакого специального оборудования, кроме стандартной клавиатуры. Основной характеристикой, по которой строится свертка для идентификации, является динамика набора кодового слова.
3. $\textit{По голосу.}$ Это одна из старейших технологий, в настоящее время ее развитие ускорилось, так как предполагается ее широкое использование в построении "интеллектуальных зданий". Существует достаточно много способов построения кода идентификации по голосу, как правило, это различные сочетания частотных и статистических характеристик голоса.
4. Другие методы. Для данной группы методов также описаны только самые распространенные методы, существуют еще такие уникальные способы, как идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т. д.
Краткий исторический обзор.
Проблематика компьютерной биометрической идентификации активно развивается с 1960-х годов. Можно отметить следующие основные вехи этого процесса.
- 1960-e - создано биометрическое подразделение NIST, первые попытки автоматизации процесса идентификации личности по следующим биометрическим характеристикам: лицо, голос, отпечатки, подпись.
- 1970-е годы - первые автоматизированные системы верификации личности, методы идентификации по форме ладони и динамической подписи.
- 1976 - первые мультибиометрические эксперименты.
- 1980-е годы - значительно автоматизированные системы и первые методы
полностью автоматической идентификации.
С конца 1980х годов наблюдается всплеск научного и практического интереса к биометрической идентификации, сопровождающийся ростом числа биометрических методов, алгоритмов и технологий, в том числе в СССР и России. Это связано не столько с прикладным интересом к биометрической идентификации, сколько с развитием аппаратных средств, в первую очередь, персональных компьютеров и периферийных устройств для работы с изображениями и аудиосигналами.
В России наиболее важные результаты по биометрической идентификации были получены в работах С. О. Новикова, В. Ю. Гудкова, О. М. Черномордика по распознаванию отпечатков пальцев, Г. А. Кухарева и А. А. Тельных по различным аспектам лицевой биометрии, А. И. Иванова и А. Ю. Малыгина по нейросетевым методам биометрической идентификации, Л. М. Местецкого по распознаванию на основе параметров кисти руки, И. Н. Спиридонова в области стандартизации и биометрической техники, В. И. Дымкова и И. Н. Синицына по автоматизации научных исследований в области биометрической идентификации, С. Л. Бочкарева в области голосовой идентификации личности, О. С. Ушмаева по мультибиометрии.
Сложились научные школы, занимающиеся проблематикой биометрической идентификации. Среди них следует выделить коллективы специалистов, работающих в институтах ИПИ РАН, ГосНИИАС, ИСА РАН, МГУ им. М. В. Ломоносова, МГТУ им. Н. Э. Баумана, ФГУП "ПНИЭИ"; компаниях "Биолинк", "Вокорд Телеком", НПП "Лазерные системы", "Системы Папилон", "Сонда", "СТЭЛ", "Центр речевых технологий".
Среди зарубежных исследований в области биометрической идентификации следует выделить работы таких специалистов, как P. Phillips, P. Grother, А. Jain, N. Ratha, P. Griffin, D. Maio, D. Maltoni, A. Masnfield, J. Wayman, K. Bowyer, M. Turk, A. Pentland, R. Bolle, A. Ross, J. Daugman, D. Zhang, Karr-Ann Toh, O. Tosi, S. Pankanti, C. Soutar, Tieniu Tan, O. Castillo, P. Melin, J. P. Campbell, J. Garofolo, D. Reynolds, L. Flom, J. Kittler, P. Flynn, R. Chellappa, W. Zhao, J.-C. Junqua, J. F. Bonastre, J. Bigun, K. Brady, D. Burr, B. Dorizzi, S. Prabhakar, J. Conell, G. Doddington, J. Ortega-Garcia, A. Bazen, S. Gerez, R. Plamondon, M. Eleccion, M. Fornefett, J. Wegstein, L. Kersta, L. Harmon, A. Fejfar, T. Vetter, A. G. Kersta, L. D. Harmon, B. G. Sherlock, D. M. Monro, M. Kucken.
Существующие биометрические системы.
В настоящее время на рынке предлагается ряд готовых систем и технологий биометрической идентификации и аутентификации личности.
Например, в области распознавания лиц одними из наиболее продвинутых решений являются следующие.
Система ZN-Face компании $\textit{ZN Vision Technologies AG}$ сочетает в себе новейшие компьютерные разработки с системой контроля доступа, основанной на автоматическом распознавании лиц. ZN-камера делает снимок человека, стоящего на рубеже контроля, и проверяет его в считанные доли секунды. Специально разработанный модуль оптического фильтра и функция контроля за живым лицом предотвращает любую попытку обмана путем применения фотографий или масок.
Компьютеризованная база фотоданных ZN-Phantomas может автоматически сравнивать и идентифицировать лица. Для сравнения годится фотография, фоторобот, рисунок или кадр, полученный при видеосъемке. ZN-Phantomas проводит поиск среди сохраненных в памяти изображений, используя систему распознавания лиц, созданную по образу работы человеческого мозга на базе технологии органического видения. Скорость работы системы позволяет просматривать 10 тыс изображений за три минуты. Система может работать со всеми SQL-базами данных, использующими ODBC-протокол (Oracle, Sybase SQL, DB2, Informix).
Система FaceIT компании $\textit{Identix Inc}$ осуществляет распознавание людей при попадании изображения лица в поле зрения видеокамеры высокого разрешения. Разработки фирмы финансируются госдепартаментом США. Данная система проходит апробацию в аэропортах США. В прессе появлялись сообщения, что результаты тестирования нельзя назвать удовлетворительными, однако контракт с фирмой продолжен, и теперь акцент переносится на идентификацию по фотографиям. госдепартамент США собирается обязать гостей США иметь фото установленного образца, дабы облегчить распознавательным программам работу.
Из систем, разработанных в России и СНГ, можно рассмотреть продукцию фирмы $\textit{Asia-Software}$. Фирма предлагает FRS SDK - комплект разработчика, предназначенный для построения информационно-поисковых систем, связанных с распознаванием лиц, и ряд систем идентификации по изображениям лиц. Система базируется на алгоритмах распознавания и сравнения изображений. Основой этих алгоритмов является модифицированный метод анализа принципиальных компонент, заключающийся в вычислении максимально декореллированных коэффициентов, характеризующих входные образы человеческих лиц. На вход системы подается оцифрованное видеоизображение. Специальные алгоритмы определяют наличие изображения лица человека, выделяют его, определяют точное расположение зрачков, производят позиционирование и масштабирование. После этого происходит автоматическое кодирование выделенного изображения лица человека с целью определения основных характерных признаков. Размер полученного массива признаков составляет примерно $300$~байт, что позволяет строить идентификационные системы даже на однокристальных ЭВМ.
Характеристики биометрических систем.
Показателями надежности биометрических систем могут служить вероятности ошибок первого и второго рода. Ошибки первого рода определяют вероятность ложного отказа (FRR, False Rejection Rate) и возникают при отказе в доступе легальному пользователю системы. Ошибки же второго рода показывают вероятность ложного допуска (FAR, False Acceptance Rate) и появляются при предоставлении доступа постороннему лицу. FRR и FAR связаны обратной зависимостью. Современные биометрические системы имеют очень большой разброс этих характеристик.
Биометрическую систему также можно характеризовать уровнем равной вероятности ошибок первого и второго рода (EER, Equal Error Rates) - точкой, в которой вероятность ошибки первого рода равна вероятности ошибки второго рода. На основании EER можно делать выводы об относительных достоинствах и недостатках разных биометрических методов. Чем ниже уровень EER, тем выше качество системы.
Еще один параметр, влияющий на выбор и установку биометрической системы, - пропускная способность. Она характеризует время, которое требуется человеку для взаимодействия с данным биометрическим устройством.
Сортировать и сравнивать описанные выше биометрические методы по показаниям ошибок первого рода очень сложно, так как они сильно разнятся для одних и тех же методов из-за сильной зависимости от оборудования, на котором они реализованы.
По показателям ошибок второго рода общая сортировка методов биометрической аутентификации выглядит так (от лучших к худшим):
- радужная оболочка глаза, сетчатка глаза;
- отпечаток пальца, термография лица, форма ладони;
- форма лица, расположение вен на кисти руки и ладони;
- подпись;
- клавиатурный почерк;
- голос.
Можно сделать вывод, что, с одной стороны, статические методы идентификации существенно лучше динамических, а с другой стороны - существенно дороже.
Текущее состояние технологии и перспективы дальнейших разработок.
В настоящий момент общее состояние биометрических технологий в мире еще нельзя признать удовлетворительным. Скорее можно говорить о биометрии как о быстро развивающейся области исследований и приложений, в которой еще не удалось достичь требуемых показателей. Целый ряд серьезных проверок, проведенных в последнее время, показал недостаточную надежность таких систем.
Например, полицейское управление города Тампа, штат Флорида (США), после двух лет эксплуатации деинсталлировало за бесполезностью программное обеспечение опознания лиц, работавшее совместно с камерами наружного наблюдения. Сеть таких камер позволяла вести надзор за публикой в городском парке развлечений Айбор-сити. Предполагалось, что техника в комплекте с программой для сканирования/опознания лиц, подсоединенной к базе из 30 тысяч известных правонарушителей и сбежавших из дома детей, повысит эффективность работы полиции. Однако за два года система не дала ни единого успешного результата, будь то автоматическое опознание разыскиваемых или арест подозреваемых. Программное обеспечение было предоставлено компанией Identix, одним из ведущих в США поставщиков биометрических технологий опознания по лицу и отпечаткам пальцев.
Известен отчет японского криптографа Цутомо Мацумото, скомпрометировавшего более десятка систем опознания пользователя по отпечатку пальца. Недавно аналогичное обширное исследование было предпринято немецким компьютерным журналом "c"t". Выводы экспертов однозначны: биометрические системы для потребительского рынка пока не достигли того уровня, когда их можно рассматривать в качестве реальной альтернативы традиционным паролям. Так, систему опознания лиц FaceVACS-Logon немецкой фирмы $\textit{Cognitec}$ удается ввести в заблуждение, просто предъявив фотографию зарегистрированного пользователя. Для обмана более изощренного ПО, анализирующего характерные признаки живого человека (мимические движения лица) может быть успешно применен экран ноутбука, на котором демонстрируется видеоклип с записью лица. Несколько сложнее обмануть систему Authenticam BM-ET100 фирмы $\textit{Panasonic}$ для опознания радужной оболочки глаза, поскольку здесь инфракрасные датчики реагируют не только на характерный узор изображения радужки, но и на иную глубину расположения зрачка. Однако, если проделать небольшое отверстие на месте зрачка в фотоснимке глаза, куда при опознании заглядывает другой человек, систему удается обмануть. Что же касается систем опознания пользователя по отпечатку пальца с помощью емкостного сенсора на мышке или клавиатуре, то здесь самым распространенным способом обмана является повторное "оживление" уже имеющегося отпечатка, оставленного зарегистрированным пользователем. Для "реанимации" остаточного отпечатка иногда бывает достаточно просто подышать на сенсор, либо приложить к нему тонкий полиэтиленовый пакет, наполненный водой. Подобные трюки, в частности, весьма удачно опробованы на мышках ID Mouse фирмы $\textit{Siemens}$, оснащенных емкостным сенсором FingerTIP производства $\textit{Infineon}$. Наконец, "искусственный палец", отлитый в парафиновой форме из силикона, позволил исследователям одолеть все шесть протестированных дактилоскопических систем.
Однако, несмотря на общую негативную оценку современного состояния биометрических систем идентификации личности, во всем мире наблюдается тенденция к развитию исследований и разработок в области биометрии. При этом одной из основных тенденций последнего времени является постепенный перенос приоритетов с контактных на бесконтактные методы биометрического распознавания. Причиной этого явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, %то есть не только бесконтактно (дистанционно), но %и без специального сотрудничества (специального предъявления биометрических %признаков) со стороны идентифицируемых персон, в сложных условиях, в группе и в толпе. Созданию таких биометрических систем нового поколения препятствуют ряд специфических проблем, пока еще не имеющих адекватного решения.
Первая группа проблем связана с тем, что системы скрытного наблюдения с целью обеспечения безопасности должны работать в условиях естественного поведения человека, не предъявляющего специально свое лицо и не произносящего заранее известных ключевых фраз. В этом случае еще до решения задачи распознавания необходимо решить задачу обнаружения (определения местоположения, выделения человека в группе), да и сама задача распознавания лица и голоса в неконтролируемых условиях становится существенно сложнее. Вторая группа существующих здесь проблем связана с тем, что в случае задачи обеспечения безопасности (в отличие от задачи обеспечения контроля доступа) нет возможности опереться на сотрудничество идентифицируемой персоны даже на этапе обучения. Поэтому для обучения приходится использовать имеющиеся фрагментарные и разнородные аудио- и видеоматериалы самого различного качества и происхождения. Это еще более усложняет задачу обучения биометрической системы. Наконец, третья группа проблем связана с тем, что получаемые (с учетом перечисленных проблем) вероятности правильного распознавания и ложного обнаружения заданной персоны в естественной обстановке только по лицу или только по голосу оказываются существенно ниже показателей, требуемых для удовлетворительного функционирования ответственных систем обеспечения безопасности и контроля доступа. С этим связана необходимость использовать комплексирование результатов биометрического распознавания, полученного от разных источников информации.
Именно с решением указанных проблем могут быть связаны существенные прорывы в области биометрических технологий в ближайшие годы.
Биометрия в широком и узком смысле.
Таким образом, биометрические технологий идентификации представляют собой быстро развивающееся научно-техническое направление, в результатах которого остро нуждаются такие области применения, как системы охраны и контроля доступа, системы паспортного и визового контроля, системы предупреждения преступлений и идентификации преступников, системы контроля доступа, системы учета и сбора статистики посетителей, системы идентификации удаленных пользователей и пользователей интернета, верификации кредитных карточек, криминалистической экспертизы, контроля времени посещения на предприятиях и т. д.
Помимо описанных биометрических технологий аутентификации, область "биометрии в широком смысле" включает также ряд приложений, связанных с выделением и измерением различных биологических характеристик человеческого тела, жестов, движений и т. п., предназначенных не для персональной идентификации, а для использования в спортивных, медицинских, телекоммуникационных, развлекательных и других целях.
Кражи идентификационных данных вызывают все большую обеспокоенность в обществе - по данным Федеральной комиссии по торговле США, жертвами хищения идентифицирующих сведений ежегодно становятся миллионы, а «кража личности» стала самой распространенной жалобой потребителей. В цифровую эпоху традиционных методов аутентификации - паролей и удостоверений личности - уже недостаточно для борьбы с хищением идентификационных сведений и обеспечения безопасности. «Суррогатные репрезентации» личности легко забыть где-либо, потерять, угадать, украсть или передать.
Биометрические системы распознают людей на основе их анатомических особенностей (отпечатков пальцев, образа лица, рисунка линий ладони, радужной оболочки, голоса) или поведенческих черт (подписи, походки). Поскольку эти черты физически связаны с пользователем, биометрическое распознавание надежно в роли механизма, следящего, чтобы только те, у кого есть необходимые полномочия, могли попасть в здание, получить доступ к компьютерной системе или пересечь границу государства. Биометрические системы также обладают уникальными преимуществами - они не позволяют отречься от совершенной транзакции и дают возможность определить, когда индивидуум пользуется несколькими удостоверениями (например, паспортами) на разные имена. Таким образом, при грамотной реализации в соответствующих приложениях биометрические системы обеспечивают высокий уровень защищенности.
Правоохранительные органы уже больше века в своих расследованиях пользуются биометрической аутентификацией по отпечаткам пальцев, а в последние десятилетия происходит быстрый рост внедрения систем биометрического распознавания в правительственных и коммерческих организациях во всем мире. На рис. 1 показаны некоторые примеры. Хотя многие из этих внедрений весьма успешны, существуют опасения по поводу незащищенности биометрических систем и потенциальных нарушений приватности из-за несанкционированной публикации хранимых биометрических данных пользователей. Как и любой другой аутентификационный механизм, биометрическую систему может обойти опытный мошенник, располагающий достаточным временем и ресурсами. Важно развеивать эти опасения, чтобы завоевать доверие общества к биометрическим технологиям.
Принцип действия биометрической системы
Биометрическая система на этапе регистрации записывает образец биометрической черты пользователя с помощью датчика - например, снимает лицо на камеру. Затем из биометрического образца извлекаются индивидуальные черты - например, минуции (мелкие подробности линий пальца) - с помощью программного алгоритма экстракции черт (feature extractor). Система сохраняет извлеченные черты в качестве шаблона в базе данных наряду с другими идентификаторами, такими как имя или идентификационный номер. Для аутентификации пользователь предъявляет датчику еще один биометрический образец. Черты, извлеченные из него, представляют собой запрос, который система сравнивает с шаблоном заявленной личности с помощью алгоритма сопоставления. Он возвращает рейтинг соответствия, отражающий степень схожести между шаблоном и запросом. Система принимает заявление, только если рейтинг соответствия превышает заранее заданный порог.
Уязвимости биометрических систем
Биометрическая система уязвима для двух видов ошибок (рис. 2). Когда система не распознает легитимного пользователя, происходит отказ в обслуживании, а когда самозванец неверно идентифицируется в качестве авторизованного пользователя, говорят о вторжении. Для таких сбоев существует масса возможных причин, их можно поделить на естественные ограничения и атаки злоумышленников.
Естественные ограничения
В отличие от систем аутентификации по паролю, которые требуют точного соответствия двух алфавитно-цифровых строк, биометрическая аутентификационная система полагается на степень схожести двух биометрических образцов, а поскольку индивидуальные биометрические образцы, полученные в ходе регистрации и аутентификации, редко идентичны, то, как показано на рис. 3, биометрическая система может делать ошибки аутентификации двух видов. Ложное несоответствие происходит, когда два образца от одного и того же индивидуума имеют низкую схожесть и система не может их сопоставить. Ложное соответствие происходит, когда два образца от разных индивидуумов имеют высокое подобие и система некорректно объявляет их совпадающими. Ложное несоответствие ведет к отказу в обслуживании легитимного пользователя, тогда как ложное соответствие может привести к вторжению самозванца. Поскольку ему не надо применять какие-то специальные меры для обмана системы, такое вторжение называют атакой нулевого усилия. Большая часть исследований в области биометрии за последние пятьдесят лет была сосредоточена на повышении точности аутентификации - на минимизации ложных несоответствий и соответствий.
Атаки злоумышленников
Биометрическая система также может дать сбой в результате злоумышленных манипуляций, которые могут проводиться через инсайдеров, например сисадминов, либо путем прямой атаки на системную инфраструктуру. Злоумышленник может обойти биометрическую систему, если вступит в сговор с инсайдерами (или принудит их), либо воспользуется их халатностью (например, невыходом из системы после завершения транзакции), либо выполнит мошеннические манипуляции с процедурами регистрации и обработки исключений, которые изначально были разработаны для помощи авторизованным пользователям. Внешние злоумышленники также могут вызвать сбой в биометрической системе посредством прямых атак на пользовательский интерфейс (датчик), модули экстракции черт или сопоставления либо на соединения между модулями или базу шаблонов.
Примеры атак, направленных на системные модули и их межсоединения: трояны, «человек посередине» и атаки воспроизведения. Поскольку большинство видов таких атак также применимы к системам аутентификации по паролю, существует ряд контрмер наподобие криптографии, отметок времени и взаимной аутентификации, которые позволяют предотвратить или минимизировать эффект таких вторжений.
Две серьезные уязвимости, которые заслуживают отдельного внимания в контексте биометрической аутентификации: атаки подделки на пользовательский интерфейс и утечка из базы шаблонов. Эти две атаки имеют серьезное негативное влияние на защищенность биометрической системы.
Атака подделки состоит в предоставлении поддельной биометрической черты, не полученной от живого человека: пластилиновый палец, снимок или маска лица, реальный отрезанный палец легитимного пользователя.
Фундаментальный принцип биометрической аутентификации состоит в том, что, хотя сами биометрические признаки не являются секретом (можно тайно получить фото лица человека или отпечаток его пальца с предмета или поверхности), система тем не менее защищена, так как признак физически привязан к живому пользователю. Успешные атаки подделки нарушают это базовое предположение, тем самым серьезно подрывая защищенность системы.
Исследователи предложили немало методов определения живого состояния. Например, путем верификации физиологических характеристик пальцев или наблюдения за непроизвольными факторами, такими как моргание, можно удостовериться в том, что биометрическая особенность, зарегистрированная датчиком, действительно принадлежит живому человеку.
Утечка из базы шаблонов - это ситуация, когда информация о шаблоне легитимного пользователя становится доступной злоумышленнику. При этом повышается опасность подделки, так как злоумышленнику становится проще восстановить биометрический рисунок путем простого обратного инжиниринга шаблона (рис. 4). В отличие от паролей и физических удостоверений личности, краденый шаблон нельзя просто заменить новым, так как биометрические признаки существуют в единственном экземпляре. Краденые биометрические шаблоны также можно использовать для посторонних целей - например, для тайной слежки за человеком в различных системах или для получения приватной информации о его здоровье.
Защищенность биометрического шаблона
Важнейший фактор минимизации рисков безопасности и нарушения приватности, связанных с биометрическими системами, - защита биометрических шаблонов, хранящихся в базе данных системы. Хотя эти риски можно до некоторой степени уменьшить за счет децентрализованного хранения шаблонов, например на смарткарте, которую носит с собой пользователь, подобные решения нецелесообразны в системах типа US-VISIT и Aadhaar, которым нужны средства дедупликации.
Сегодня существует немало методов защиты паролей (в их числе шифрование, хэширование и генерация ключей), однако базируются они на предположении, что пароли, которые пользователь вводит на этапе регистрации и аутентификации, идентичны.
Требования к защищенности шаблона
Основная трудность при разработке схем защиты биометрического шаблона состоит в том, чтобы достигнуть приемлемого компромисса между тремя требованиями.
Необратимость. Злоумышленнику должно быть затруднительно вычислительным путем восстановить биометрические черты из сохраненного шаблона либо создать физические подделки биометрического признака.
Различимость. Схема защиты шаблона не должна ухудшать точность аутентификации биометрической системой.
Отменяемость. Должна быть возможность из одних и тех же биометрических данных создать несколько защищенных шаблонов, которые нельзя будет связать с этими данными. Это свойство не только позволяет биометрической системе отзывать и выдавать новые биометрические шаблоны в случае компрометации базы данных, но и предотвращает перекрестное сопоставление между базами данных, за счет чего сохраняется приватность данных о пользователе.
Методы защиты шаблонов
Имеется два общих принципа защиты биометрических шаблонов: трансформация биометрических черт и биометрические криптосистемы.
В случае трансформации биометрических черт (рис. 5, а ) защищенный шаблон получен за счет применения необратимой функции трансформации к оригиналу шаблона. Такая трансформация обычно основана на индивидуальных характеристиках пользователя. В процессе аутентификации система применяет ту же функцию трансформации к запросу, и сопоставление происходит уже для трансформированного образца.
Биометрические криптосистемы (рис. 5, б ) хранят только часть информации, полученной из биометрического шаблона, - эта часть называется защищенным эскизом (secure sketch). Хотя его самого недостаточно для восстановления оригинального шаблона, он все же содержит необходимое количество данных для восстановления шаблона при наличии другого биометрического образца, похожего на полученный при регистрации.
Защищенный эскиз обычно получают путем связывания биометрического шаблона с криптографическим ключом, однако защищенный эскиз - это не то же самое, что биометрический шаблон, зашифрованный с помощью стандартных методов. При обычной криптографии зашифрованный шаблон и ключ расшифровки - это две разные единицы, и шаблон защищен, только если защищен и ключ. В защищенном шаблоне же инкапсулируются одновременно и биометрический шаблон, и криптографический ключ. Ни ключ, ни шаблон нельзя восстановить, имея только защищенный эскиз. Когда системе предоставляют биометрический запрос, достаточно похожий на шаблон, она может восстановить и оригинальный шаблон, и криптоключ с помощью стандартных методов распознавания ошибок.
Исследователи предложили два основных метода генерации защищенного эскиза: нечеткое обязательство (fuzzy commitment) и нечеткий сейф (fuzzy vault). Первый можно использовать для защиты биометрических шаблонов, представленных в виде двоичных строк фиксированной длины. Второй полезен для защиты шаблонов, представленных в виде наборов точек.
За и против
Трансформация биометрических черт и биометрические криптосистемы имеют свои «за» и «против».
Сопоставление в схеме с трансформацией черт часто происходит напрямую, и возможна даже разработка функций трансформации, не меняющих характеристик исходного пространства признаков. Однако бывает сложно создать удачную функцию трансформации, необратимую и терпимую к неизбежному изменению биометрических черт пользователя со временем.
Хотя для биометрических систем существуют методы генерации защищенного эскиза, основанные на принципах теории информации, трудность состоит в том, чтобы представить эти биометрические черты в стандартизованных форматах данных наподобие двоичных строк и наборов точек. Поэтому одна из актуальных тем исследований - разработка алгоритмов, преобразующих оригинальный биометрический шаблон в такие форматы без потерь значащей информации.
Методы fuzzy commitment и fuzzy vault имеют и другие ограничения, в том числе неспособность генерировать много несвязанных шаблонов из одного и того же набора биометрических данных. Один из возможных способов преодоления этой проблемы - применение функции трансформации черт к биометрическому шаблону до того, как она будет защищена с помощью биометрической криптосистемы. Биометрические криптосистемы, которые объединяют трансформацию с генерацией защищенного эскиза, называют гибридными.
Головоломка приватности
Нерасторжимая связь между пользователями и их биометрическими чертами порождает обоснованные опасения по поводу возможности раскрытия персональных данных. В частности, знание информации о хранимых в базе биометрических шаблонах можно использовать для компрометации приватных сведений о пользователе. Схемы защиты шаблонов до некоторой степени могут снизить эту угрозу, однако многие сложные вопросы приватности лежат за рамками биометрических технологий. Кто владеет данными - индивидуум или провайдеры сервиса? Сообразно ли применение биометрии потребностям в безопасности в каждом конкретном случае? Например, следует ли требовать отпечаток пальца при покупке гамбургера в фастфуде или при доступе к коммерческому Web-сайту? Каков оптимальный компромисс между безопасностью приложения и приватностью? Например, следует ли разрешать правительствам, предприятиям и другим лицам пользоваться камерами наблюдения в публичных местах, чтобы тайно следить за законной деятельностью пользователей?
На сегодня удачных практических решений для подобных вопросов нет.
Биометрическое распознавание обеспечивает более надежную аутентификацию пользователей, чем пароли и удостоверяющие личность документы, и является единственным способом обнаружения самозванцев. Хотя биометрические системы не являются абсолютно надежными, исследователи сделали значительные шаги вперед по пути идентификации уязвимостей и разработки мер противодействия им. Новые алгоритмы для защиты биометрических шаблонов частично устраняют опасения по поводу защищенности систем и приватности данных пользователя, но понадобятся дополнительные усовершенствования, прежде чем подобные методы будут готовы к применению в реальных условиях.
Анил Джейн ([email protected]) - профессор факультета компьютерных наук и инженерного проектирования Мичиганского университета, Картик Нандакумар ([email protected]) - научный сотрудник сингапурского Института инфокоммуникационных исследований.
Anil K. Jain, Kathik Nandakumar, Biometric Authentication: System Security and User Privacy. IEEE Computer, November 2012, IEEE Computer Society. All rights reserved. Reprinted with permission.
Аннотация.
В статье приведены основные биометрические параметры. Рассмотрены методы идентификации, нашедшие широкое применение в России. Биометрическая идентификация способна решить задачу объединения всех существующих паролей пользователя к одному и применять его повсеместно. Процесс извлечения свойств отпечатка пальцев начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Распознавание лиц - это самый приемлемый обществом метод биометрической идентификации. Идентификации личности по радужной оболочке глаза состоит из получения изображения, на котором локализуется радужная оболочка и составляется её код. В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. Идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Беcконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.
Ключевые слова: биометрические параметры, идентификация личности, отпечатки пальцев, распознавание лиц, радужная оболочка, биометрическая идентификация, алгоритм, базы данных, биометрические методы, пароль
10.7256/2306-4196.2013.2.8300
Дата направления в редакцию:
24-05-2013
Дата рецензирования:
25-05-2013
Дата публикации:
1-4-2013
Abstract.
The article lists the main biometric parameters. The author reviews methods of identification that are used widely in Russia. Biometric identification helps to solve the problem of unification of all existing user passwords to one and apply it across the board. The process of extracting fingerprint features begins with an assessment of image quality is calculated orientation grooves which each pixel represents the direction of the grooves. Face Detection is the most acceptable method of biometric identification in society. Identification of the iris consists of image acquisition with localization of an iris and then forming a code of the iris. As the two main characteristics of any biometric system it is possible to use Type I and Type II errors. Identification based on the iris pattern of the eye is one of the most reliable biometric methods. Contactless method of obtaining data in this case suggests simplicity of use of this method in various areas.
Keywords:
Biometric identification, iris, face recognition, fingerprints, personal identification, biometrics, algorithm, database, biometric methods, password
Введение
Человек в современном обществе всё в большей степени нуждаются в обеспечении личной безопасности и безопасности производимых ими действий. Для каждого из нас необходимым атрибутом повседневной жизни становится надёжная авторизация: повсеместное применение банковских карт, сервисов электронной почты, совершение различных операций и пользование услугами - всё это требует идентификации личности. Уже сегодня мы вынуждены вводить десятки паролей, иметь при себе токен или другой идентифицирующий маркер. В такой ситуации остро встаёт вопрос: «А можно ли свести все существующие пароли к одному и применять его повсеместно, не опасаясь кражи или подмены?»
Биометрические параметры
Биометрическая идентификация способна решить данную задачу. Распознавание человека по биометрическим данным - это автоматизированный метод идентификации на основе физиологических (являются физическими характеристиками и измеряются в определённые моменты времени) и поведенческих (представляют собой последовательность действий и протекают в течение некоторого периода времени) черт. В таблице 1 перечислены основные из них.
Таблица 1
Биометрические параметры
Применяются часто |
Применяются редко |
||
Физиологические |
Поведенческие |
Физиологические |
Поведенческие |
1. Отпечатки пальцев |
1. Подпись |
1. Сетчатка глаза |
1. Клав. почерк |
2. Походка |
|||
3. Радужная оболочка |
3. Форма ушей |
||
4. Геометрия руки |
|||
5. Отражение от кожи |
|||
6. Термограмма |
Подробнее остановимся на трёх, распространённых в России.
Отпечатки пальцев
Отпечатки пальцев (рис. 1 а) представляют собой мелкие бороздки на внутренней поверхности ладони и ступни человека. Судебная экспертиза основывается на предположении, что не существует двух одинаковых отпечатков пальцев, принадлежащих разным людям.
Для сравнения отпечатков эксперты используют множество деталей папиллярных узоров, имеющих следующие черты: конец бороздки, раздвоение бороздки, независимая бороздка, озеро, ответвление, перекрест и другие. Автоматические методы сравнения работают схожим образом. Процесс извлечения свойств отпечатка начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Затем происходит сегментация бороздок и локализации деталей с последующим распознаванием.
Геометрия лица
Задача распознавания лиц идёт рука об руку с человеком с незапамятных времён. Паспорт, снабжённый фотографией, стал повсеместным и главным документом, удостоверяющим личность человека. Это самый приемлемый обществом метод биометрической идентификации. Простота фиксирования данного биометрического признака позволила составить большие базы данных: фотографии в правоохранительных органах, видеозаписи камер наблюдения, социальные сети и так далее.
Источником получения изображения могут быть: оцифровке документы; камеры наблюдения; трёхмерные изображения; снимки в инфракрасном спектре.
На полученном изображении локализуется лицо (рис. 1 б), затем применяется один из двух методов: внешний вид лица и геометрия лица. Предпочтительным является метод, основанный на анализе геометрии лица, история распознавания которого насчитывает тридцатилетнюю историю.
Радужная оболочка глаза
Радужная оболочка - цветная часть глаза между склерой и зрачком. Является, как и отпечатки пальцев фенотипической особенностью человека и развивается в течении первых месяцев беременности.
Идея идентификации личности по радужной оболочке глаза была предложена офтальмологами ещё в 1936 году. Позднее, идея нашла своё отражение в некоторых фильмах. Например, в 1984 году был снят фильм про Джеймса Бонда «Никогда не говори никогда». И лишь в 1994 году появился первый автоматизированный алгоритм распознавания радужной оболочки глаза, разработанный математиком Джоном Даугманом. Алгоритм был запатентован и до сих пор лежит в основе систем распознавания радужной оболочки.
Устройство по захвату изображения глаза, которое будет удобным для пользователя и незаметным, является одной из проблем. Ведь при этом оно должно считывать рисунок радужной оболочки не зависимо от условий освещения. Есть несколько подходов. Первый из них базируется на поиске лица и глаз, затем другая камера с увеличительным объективом получает высококачественное изображение радужной оболочки. Второй - требует, чтобы глаз человека находился внутри определённой области наблюдений одной камеры.
На полученном изображении локализуется радужная оболочка и составляется её код (рис. 1 в). Даугман использовал двумерный фильтр Габора. Дополнительно создаётся маска, где изображение зашумлено (области наложения ресниц и век), которая накладывается на исходный код радужной оболочки. Для идентификации вычисляется расстояние Хэмминга (разница в битах между двумя шаблонами радужных оболочек), которое для одинаковых радужных оболочек будет наименьшим.
Рисунок 1. Примеры биометрических параметров |
Статистические характеристики
В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. В области биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). FAR характеризует вероятность ложного совпадения биометрических характеристик двух людей. FRR - вероятность отказа доступа человеку, имеющего допуск.
В таблице 2 приведены средние показатели для различных биометрических систем
Таблица 2
Характеристики биометрических систем
Следует отметить, что данные показатели варьируются в зависимости от используемых биометрических баз данных и применяемых алгоритмов, однако их качественное соотношение остаётся примерно одним. Анализируя эти данные, можно придти к выводу, что идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Безконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.
17.01.2002 Джим Карр
Новое поколение биометрических устройств аутентификации сметает прежние преграды.
Если экипаж космического корабля во главе с капитаном Джином Люком Пикардом из известного телесериала Star Trek мог взаимодействовать с вычислительной системой Enterprise с помощью голоса, то почему же мы не входим в сеть таким образом? На самом деле сегодня это и возможно, и невозможно.
Биометрические устройства аутентификации для проверки идентичности пользователя на основе таких уникальных биологических показателей, как голос, отпечатки пальцев или черты лица, стали основой сюжетов многих киносценариев. Для перехода в режим ручного управления капитан Пикард мог обратиться к системе так: «Компьютер, используй код аутентификации альфа-омега!» Однако действительность часто не совпадает с вымыслом, и вряд ли вам или вашим коллегам удастся войти в свою сеть, используя речевое обращение.
Нельзя сказать, что биометрические устройства прежде не были доступны. Например, компания EyeDentify в 1982 г. первой начала поставлять на рынок сканеры сетчатки глаза; компания Recognition Systems с 1986 г. реализует устройство считывания для идентификации сотрудников по форме ладони; в изобилии предлагается оборудование для считывания радужной оболочки и отпечатков пальцев, а также системы удостоверения личности по голосу и чертам лица. Впрочем, широкое распространение подобных устройств тормозилось целым рядом факторов. Самым главным препятствием была их высокая цена, а ведь учреждениям, где необходимы персональные устройства аутентификации, требуются крупные партии - им нужны сотни или тысячи таких устройств.
Кроме того, большинство средств аутентификации оказалoсь слишком громоздким для инсталляции на настольных системах, в ноутбуках и в таких портативных устройствах, как сотовые телефоны или персональные электронные секретари. Массовому их внедрению мешала слишком низкая скорость работы.
И наконец, мало кто из руководителей отделов ИТ осознает необходимость приобретения таких продуктов. Большинство вычислительных систем вполне обходится обычными паролями и стандартными системами доступа, контролируемыми с помощью магнитных карт-ключей, хотя сотрудники часто нарушают правила работы, делясь своими паролями и картами с коллегами.
Однако налицо все признаки того, что рынок вполне «созрел» для такого оборудования. Производители начинают преодолевать физические и финансовые препятствия на пути внедрения биометрических устройств, и весьма вероятно, что им найдется применение во многих сетевых решениях.
Так что же происходит на рынке биометрических продуктов? Ясно одно: он стремительно развивается, особенно в области распознавания отпечатков пальцев, где технология уходит от оптических решений к интегральным схемам (ИС). К тому же биометрические возможности реализуются в огромном числе прочих устройств, включая клавиатуру, смарт-карты и оборудование контроля доступа. Давайте познакомимся поближе с некоторыми из них.
НЕБОЛЬШОЙ, НО РАСТУЩИЙ СПРОС
Какие бы цифры ни приводились, очевидно, что немногим организациям действительно необходимы биометрические устройства аутентификации. Поэтому рынок таких продуктов еще невелик, хотя растет довольно быстрыми темпами.
По данным аналитической компании Frost&Sullivan, общий объем продаж биометрического оборудования в Америке в 2000 г. не превысил 86,8 млн долларов и вырос в 2001 г. только до 160,3 млн долларов - цифры небольшие, тем не менее среднегодовой темп роста в сложных процентах составляет 109%. По прогнозам исследовательского центра META Group, уровень продаж этих устройств во всем мире в 2001 г. составит, как ожидается, около 300 млн долларов, а в 2003 г. эта сумма достигнет 900 млн долларов.
По информации консалтинговой компании International Biometric Group из Нью-Йорка, наиболее распространенной технологией стало сканирование отпечатков пальцев. Отмечается, что из 127 млн долларов, вырученных от продажи биометрических устройств, 44% приходится на дактилоскопические сканеры. Системы распознавания черт лица занимают второе место по уровню спроса, который составляет 14%, далее следуют устройства распознавания по форме ладони (13%), по голосу (10%) и радужной оболочке глаза (8%). Устройства верификации подписи в этом списке составляют 2%.
Эрл Перкинс, заместитель директора META Group по вопросам биометрических устройств и смарт-карт, сравнивает неприятие пользователями биометрических приборов с ситуацией, складывающейся на рынке инфраструктуры открытых ключей (Public Key Infrastructure, PKI). Он полагает, что оба направления достойны признания со стороны корпоративных служб безопасности и сетевых администраторов. По словам Джесона Райта, возглавляющего направление безопасности в компании Frost&Sullivan, основной фактор, способный радикально повлиять на ситуацию на рынке биометрических устройств, - их стоимость. Только недавно цены на биометрические продукты упали до уровня, приемлемого для массового потребителя.
Например, дактилоскопические считыватели сейчас продаются по цене от 100 до 200 долларов в расчете на пользователя, став значительно дешевле по сравнению с 1998 г., когда их цена составляла около 400 долларов. К тому же многочисленные производители ПК и внешних устройств встраивают дактилоскопические сканеры в свои продукты; среди них крупнейший производитель ПК компания Compaq, поставщики «мышей» SecuGen и Siemens, а также выпускающая клавиатуры Fujitsu Takaisaws.
Резкое снижение цен на устройства аутентификации наблюдается и на рынке других биометрических технологий. В частности, стоимость оборудования идентификации личности по голосу и чертам лица, где могут применяться микрофоны и камеры, которые поставляются в стандартной комплектации со многими настольными системами ПК и ноутбуками, снизилась до уровня массового потребления.
Однако есть нечто более важное, чем цены, утверждает Перкинс. Тот факт, что организации еще не закупают биометрические устройства крупными партиями, свидетельствует об отсутствии надлежащего внимания к собственной инфраструктуре идентификации. Большинство организаций имеет множество различных каталогов, пять-шесть методов аутентификации, сетевой вход в Windows, а каждое приложение защищено собственным паролем.
По существу, основная масса биометрических систем аутентификации разрабатывается в виде самостоятельных либо «точечных» решений; т. е. одно подразделение использует дактилоскопический считыватель для санкционированного доступа к ПК, другое - технологию сканирования ладони для доступа в серверную комнату, но взаимосвязи между этими двумя решениями нет. Поэтому подобные устройства обычно внедряются сами по себе, без интеграции с внутренними системами и списками идентификаторов пользователей. Ситуация здесь меняется, но медленно.
До недавних пор производители не умели комбинировать в одном интегрированном продукте эти несопоставимые методы, чтобы разнообразное биометрическое оборудование можно было использовать с одной внутренней системой. Однако некоторые компании, например Ankari, BioNetrix, Identix, Keyware и SAFLinks, уже реализуют подобные продукты.
Они интегрируют биометрические возможности во внутренние системы: в частности, в такие системы однократной аутентификации (Single Sign-On, SSO) масштаба предприятия, как eTrust компании Computer Associates и Novell Modular Authentification Service (NMAS) компании Novell. Подобная консолидация позволяет сетевым администраторам заменить службы однократной аутентификации паролей биометрическими технологиями.
Учитывая снижение цен, уменьшение размеров устройств и более высокую степень интеграции, аналитики полагают, что сетевые администраторы наконец поймут преимущества биометрических устройств перед системами аутентификации по паролю. При использовании дактилоскопических сканеров и устройств распознавания голоса для входа в сети сотрудники избавляются от необходимости запоминать сложные пароли. При этом никто другой не сможет «позаимствовать» их отпечатки пальцев для несанкционированного доступа к критически важным сетевым ресурсам.
По словам Франка Принса, старшего аналитика группы по вопросам инфраструктуры электронной коммерции в компании Forrester Research, биометрический подход позволяет упростить процесс выяснения «кто вы такой». Обращая внимание на то, что основным фактором в продвижении биометрических технологий производители считают удобство применения этих устройств, он предостерегает от излишнего упрощения системы идентификации, которое не должно приводить к нарушению принципа «разумной достаточности».
ОПТИКА ПРОТИВ ИНТЕГРАЛЬНЫХ СХЕМ
Неудивительно, что самый значительный прогресс наблюдается среди сканеров отпечатков пальцев, поскольку они составляют значительную долю рынка биометрических устройств. При этом многие производители все чаще переходят от дактилоскопического оборудования на базе оптики к продуктам, основанным на интегральных схемах.
В традиционных устройствах сканирования отпечатков пальцев основным элементом является маленькая оптическая камера для записи характерного рисунка пальца. Ряд производителей, включая компанию DigitalPersona, все еще использует эту технологию.
Однако, по мнению Скотта Муди, главного администратора в AuthenTec (полупроводниковой компании, занимающейся разработкой микросхем для некоторых периферийных дактилоскопических сканеров), все больше производителей дактилоскопического оборудования проявляeт внимание к сенсорным устройствам на базе интегральных схем. Такая тенденция открывает новые сферы применения аутентификации на основе отпечатков пальцев.
Новое поколение продуктов измеряет емкостное сопротивление кожи для формирования изображения по различным характеристикам отпечатка пальца. Например, сенсорное дактилоскопическое устройство компании Veridicom собирает информацию, считывая емкостное сопротивление с помощью твердотельного полупроводникового датчика.
Принцип действия таков: палец, приложенный к этому прибору, выполняет роль одной из пластин конденсатора. Другая, расположенная на поверхности сенсора, представляет собой кремниевую микросхему с 90 тыс. чувствительных пластинок конденсатора, которые формируют восьмиразрядное представление о выпуклостях и впадинах рисунка сосудов пальца. Полученная информация преобразуется в видеосигнал и затем обрабатывается в соответствии с алгоритмом, формирующим образец изображения. Именно по этому образцу, а не по изображению самого отпечатка, осуществляется верификация пользователя при последующей регистрации.
Другой используемый компанией AuthenTec метод делает сенсорную проверку на основе интегральных схем еще более точной. Дактилоскопический считыватель FingerLoc на базе интегральных схем (и недавно выпущенный EntrePad) содержит прямоугольную поверхность для проверки отпечатков пальцев, называемую сенсорной матрицей. Это не что иное как активный массив антенн, состоящий более чем из 16 тыс. элементов с прозрачным покрытием, защищающим от царапин и прочих внешних воздействий. Сенсорная матрица окружена направляющим кольцом, которое передает слабые сигналы, улавливаемые отдельными элементами-антеннами.
Муди приводит пример совместной работы программного обеспечения TruePrint и аппаратных устройств компании AuthenTec по сканированию более глубокого слоя (под эпидермисом) - там, где находятся уникальные выпуклости и впадины, создающие рисунок пальца. Когда пользователь прикасается к поверхности микросхемы, направляющее кольцо ассоциирует слабый сигнал с подкожным слоем пальца.
Данный сигнал создает цифровой образец, который отражает уникальную подкожную структуру - в этом заключается отличительное преимущество технологии AuthenTec. Используя усилители более высокого разрешения (менее 1 пиксела) и прочие средства восстановления сигнала, TruePrint управляет выходными сигналами с тысяч отдельных сенсорных элементов и формирует на их основе точное неискаженное представление отпечатка пальца, после чего переводит его в образец, используемый впоследствии для верификации.
ЗА И ПРОТИВ ИНТЕГРАЛЬНОГО И ОПТИЧЕСКОГО ПОДХОДОВ
Хотя поставщики биометрических устройств на базе интегральных схем и оптики не ведут между собой непримиримую войну, тем не менее каждая из технологий имеет ярых приверженцев, которые приводят различные доводы за и против обоих методов. Споры ведутся в основном вокруг стоимости и производительности.
Муди обращает внимание на то, что продукты на базе интегральных схем могут иметь значительно меньшие размеры, чем оптические считыватели, и потому их проще реализовать в более широком спектре периферийных устройств. Новое сенсорное устройство AuthenPad компании AuthenTec представляет собой квадрат со стороной 20 мм и толщиной 1,4 мм (размеры сенсора FingerLoc, выпущенного год назад, соответственно 26 мм и 4 мм).
Что же касается оптических считывателей, то, по мнению Георга Майерса, заместителя директора по маркетингу компании DigitalPersona, они будут по-прежнему присутствовать на рынке, и на это есть несколько причин. Спрос на оборудование определяется не только производительностью, но и ценой. Майерс утверждает, что устройства на интегральных схемах плохо переносят прикосновения, поскольку жир, масло, соль на руках могут со временем испортить поверхность микросхемы. Хотя производители кремниевых покрытий способны преодолеть эти трудности, производство биометрических продуктов на интегральных схемах все еще требует определенных затрат, и сократить стоимость можно только за счет уменьшения размеров микросхемы.
Проблема, по его словам, состоит в том, что информация о рисунке пальца, которую снимают маленькие микросхемы, недостаточна для получения точного представления, поскольку они не считывают информацию со всего пальца. Между тем сенсоры U.are.U компании DigitalPersona позволяют сделать это. Кроме того, такие устройства опираются на алгоритм преобразования изображения отпечатка пальца в уникальную схему «характерных точек» (см. Рисунок 1). Данный алгоритм сканирования применяется в дактилоскопических устройствах, предназначенных для пентициарных учреждений. Характерными называются точки, несущие уникальную информацию об отпечатке пальца: например, о тех местах, где рисунок сосудов заканчивается завитком или выпуклостью. Майерс считает, что такой метод позволяет более точно считывать информацию об отпечатке, нежели копирование линий кровеносных сосудов с указанием особенностей кожного рельефа.
Небольшой размер дактилоскопических считывателей на интегральных схемах обеспечивает их интеграцию в периферийные устройства, наделяя последние комбинированными функциями.
Как уже отмечалось, Compaq поставляет на рынок ПК DeskPro со считывателем в качестве одной из опций. Такой считыватель, разработанный компанией Identix, имеет площадь около дюйма и подключается к ПК через параллельный порт.
Прочие производители комбинируют биометрические системы со смарт-картами и картами-ключами. Например, компания AiT/affinitex интегрировала считыватель VeriMe в идентификационную карточку. Это устройство толщиной 1,27 мм взаимодействует со считывателем идентификационной карточки посредством инфракрасного сигнала, как это уже реализовано в случае карт контроля доступа, которые во многих учреждениях применяются для открывания дверей. Но и при таком подходе пользователям требуется первоначально занести свой отпечаток пальца в систему для создания его образца.
По словам Берни Эша, старшего администратора компании AiT/affinitex, сотрудник должен приложить свой палец к карточке, находясь внутри полутораметровой зоны от считывателя. При совпадении отпечатка с образцом системе управления сообщается его личный ключ шифрования. Таким образом гарантируется безопасный доступ к разрешенным ресурсам.
В биометрической идентификационной смарт-карте Authentic компания Oberthur Card Systems реализовала сходный подход. Как и в VeriMe, образец отпечатка пальца запоминается в памяти карты в процессе внесения в списки идентификаторов пользователей, устанавливая соответствие между образцом и личным ключом шифрования. Затем, когда пользователь вводит смарт-карту в считыватель и прикладывает палец к сенсору, ключ удостоверяет его личность.
Эрл Перкинс считает комбинацию биометрических устройств и смарт-карт удачным решением. «У многих европейских производителей смарт-карт слюнки текут при мысли о североамериканском рынке», - заявляет он, замечая, что их разработкой занимаются также компании Gemplus и Schlumberger.
ПРОТЯНИ МНЕ РУКУ
Устройства сканирования ладони, или сканирования формы ладони, по уровню доходов занимают второе место среди биометрических устройств, однако редко применяются в сетевой среде из-за высокой стоимости и размера. В качестве примера можно привести компанию Recognition Systems, которая продает систему распознавания по форме ладони HandKey II за 1595 долларов, что превышает возможности многих организаций, желающих приобрести настольные устройства безопасности. Кроме того, как и многие другие подобные устройства, HandKey II крепятся к стене и слишком велики для установки на настольную систему или ноутбук.
Однако сканеры формы ладони идеальны для вычислительных сред со строгим режимом безопасности и напряженным трафиком, включая серверные комнаты, считает Мартин Худдарт, директор компании Recognition Systems. Он утверждает, что они чрезвычайно точны, обладают очень низким коэффициентом ошибочного отказа (False Rejection Rate, FRR), т. е. процентом отклоненных законных пользователей. Низкий коэффициент FRR имеет очень важное значение, прежде всего, потому, что позволяет смягчить чувство разочарования и дискомфорта, которое испытывают пользователи по отношению к биометрическому оборудованию.
Устройства считывания формы ладони создают объемное изображение ладони, измеряя длину пальцев, толщину и площадь поверхности ладони. Продукты компании Recognition Systems выполняют более 90 измерений, которые преобразуются в девятиразрядный образец для дальнейших сравнений. Этот образец может быть сохранен локально, на индивидуальном сканере ладони либо в централизованной базе данных.
Среди производителей устройств распознавания формы ладони можно отметить компании Stromberg и Dermalog.
СИСТЕМЫ РАСПОЗНАВАНИЯ ЧЕРТ ЛИЦА И ГОЛОСА
Технология сканирования черт лица подходит для тех приложений, где прочие биометрические технологии непригодны. В этом случае для верификации и идентификации личности используются особенности глаз, носа и губ.
Производители устройств распознавания черт лица - BioID America, Visionics и eTrue - разработали собственные математические алгоритмы для идентификации пользователей: например, Visionics создала устройство Local Feature Analysys для получения снимка лица.
Компания BioID America поставляет на рынок как оборудование для распознавания по чертам лица, так и устройства верификации по голосу. Джефф Бечлер, директор по продажам, среди преимуществ сканирования черт лица называет возможность использования таких приспособлений вместе с различными типами камер, поставляемыми в стандартной комплектации с ПК.
Но исследования, проводимые компанией International Biometric Group, говорят о том, что сотрудники многих организаций не доверяют устройствам распознавания по чертам лица отчасти из-за того, что камера их фотографирует, а затем выводит снимки на экран монитора; при этом многие опасаются, что используемая камера низкого качества. Кроме того, по данным этой компании, сканирование черт лица - единственный метод биометрической аутентификации, который не требует согласия на выполнение проверки (и может осуществляться скрытой камерой), а потому имеет негативный для пользователей подтекст.
Системы аутентификации по голосу экономически выгодны по тем же причинам, что и системы распознавания по чертам лица. В частности, их можно устанавливать с оборудованием (например, микрофонами), поставляемым в стандартной комплектации со многими ПК.
Все это говорит о том, что оборудование аутентификации по голосу более пригодно для интеграции в приложения телефонии, чем для входа в сеть. Обычно оно позволяет абонентам получить доступ в финансовые или прочие системы посредством телефонной связи. Наиболее известна на этом рынке продукция компаний Nuance Communications и SpeechWorks.
Один из этапов работы данных устройств - распознавание голоса, т. е. сначала распознается контекст произнесенных слов, а затем подтверждается тождество личности.
«Системы аутентификации по голосу при записи образца и в процессе последующей идентификации опираются на такие уникальные для каждого человека особенности голоса, как высота, модуляция и частота звука», - утверждает Джо Маннино, главный администратор компании VeriVoice. По мнению Лауры Марино, менеджера по продуктам компании Nuance Communications, производящей систему аутентификации по голосу Verifier, эти показатели определяются физическими характеристиками голосового тракта и уникальны для каждого человека.
Из-за того, что голос можно просто записать на пленку или другие носители, некоторые производители, включая VeriVoice, встраивают в свои продукты операцию запроса отклика. Эта функция предлагает пользователю при входе ответить на предварительно подготовленный и регулярно меняющийся запрос: например, такой: «Повторите числа 0, 1, 3».
МИНУС АУТЕНТИФИКАЦИЯПО СЕТЧАТКЕ ГЛАЗА
Лишь в области сканирования сетчатки глаза, одном из самых точных биометрических методов, отрасль движется вспять. Это связано с тем, что основной производитель таких систем, компания EyeDentify, отозвала свою модель 2001 сканера сетчатки из-за недостаточной ее проработки: продукт отличался слишком большим количеством движущихся частей и довольно высокой ценой порядка 2000 долларов.
По словам президента EyeDentify Крега Силви, сетчатка человеческого глаза представляет собой уникальный объект для аутентификации. «Даже у близнецов рисунок кровеносных сосудов глазного дна отличается», - подчеркивает он.
Технология сканирования, запатентованная компанией EyeDentify, заключается в том, что инфракрасное излучение кровеносных сосудов сетчатки отражается и собирается под различными углами. По аналогии с другими биометрическими устройствами, полученная информация скрупулезно анализируется с помощью соответствующих алгоритмов: в частности, оборудование от EyeDentify формирует 96-разрядный образец, который уникальным образом идентифицирует человека.
К сожалению, пользователи считают модель 2001, в состав которой входят движущиеся зеркала и ленты, слишком неудобной. Силви утверждает, что компания разрабатывает сканер сетчатки, который будет стоить 400-500 долларов и способен с высокой степенью точности выполнять сканирование на расстоянии 7,5 см, не оставляя ни малейших сомнений при идентификации личности. Он уверен, что более быстрые процессоры и прочие новые технологии позволят создать полностью электронный считыватель сетчатки глаза без движущихся частей.
Джим Карр - заместитель главного редактора Network Magazine. С ним можно связаться по адресу: [email protected] .
Рассматриваемые производители биометрических устройств
Рабочая группа BioAPI Consortium занимается разработкой стандартного прикладного программного интерфейса (Application Program Interface, API) для биометрических устройств. Информацию об этих разработках можно найти по адресу: http://www.bioapi.com .
На сайте компании Internetional Biometric Group по адресу: http://www.biometricgroup.com , можно получить информацию о производителях и продуктах, а также актуальные данные о рынке биометрических технологий.
Ссылки на формулировки биометрических технологий, отчеты о научной работе, проекты и публикации компании Biometric Research на базе Мичиганского университета приводятся по адресу: http://www.boimetrics.cse.msu.edu.com .