Учебно-методический центр языковой подготовки автф кц. Процесс циклического кодирования Циклическое кодирование

Основные свойства и само название циклических кодов связаны с тем, что все разрешенные комбинации двоичных символов в передаваемом сообщении могут быть получены путем операции циклического сдвига некоторого исходного слова: Обычно кодовые комбинации циклического кода рассматривают не в виде последовательности нолей и единиц, а в виде полинома некоторой степени . Любое число в любой позиционной системе счисления можно представить в общем виде как: где х - основание системы счисления; а - цифры данной системы счисления; п-1, п-2,... - показатель степени, в которую возводится основание, и одновременно порядковые номера, которые занимают разряды. Для двоичной системы х=2, а а либо «О», либо «1». Например, двоичную комбинацию 01001 можно записать в виде полинома от аргумента х: При записи кодовой комбинации в виде многочлена единица в 1-м разряде записывается членом х", а ноль вообще не записывается. Представление кодовых комбинаций в виде многочленов позволяет установить однозначное соответствие между ними и свести действия над комбинациями к действию над многочленами. Так, сложение двоичных многочленов сводится к сложению по модулю 2 коэффициентов при равных степенях переменной. Например, Умножение производится по обычному правилу умножения степенных функций, однако полученные коэффициенты при данной степени складываются по модулю 2. Например, Деление также осуществляется как обычное деление многочленов; при этом операция вычитания заменяется операцией сложения по модулю 2: Как было отмечено выше, коды названы циклическими потому, что циклический сдвиг а п ^ а л Л,..., а 2 ,а 1 ,а д1 а п1 разрешенной комбинации а п (, а п _ 2 ,...,а 1 ,а 0 также является разрешенной комбинацией. Такая циклическая перестановка при использовании представлений в виде полиномов образуется в результате умножения данного полинома на х. Если У(х)=а пЛ х п1 + а п2 х п " 2 +... + а { х+а 0 , то У(х)х = а п] х п + а п 2 х п " 1 +... + а х х 2 + а^х. Чтобы степень многочлена не превышала п-1, член х" заменяется единицей, поэтому: Например, имеем кодовую комбинацию 1101110->х в +х 5 +х 3 +.х г -1-х. Сдвинем ее на один разряд. Получим: Что то же самое, что и умножения исходного полинома на х: Теория построения циклических кодов базируется на разделах высшей алгебры, изучающей свойства двоичных многочленов. Особую роль в этой теории играют так называемые неприводимые многочлены, т. е. полиномы, которые не могут быть представлены в виде произведения многочленов низших степеней. Такой много- член делится только на самого себя и на единицу. Из высшей алгебры известно, что на неприводимый многочлен делится без остатка двучлен х"+1. В теории кодирования неприводимое многочлены называются образующими полиномами, поскольку они «образуют» разрешенные кодовые комбинации (неприводимые полиномы табулированы, см. табл. 8.4) (9]. Идея построения циклического кода сводится к тому, что полином, представляющий информационную часть кодовой комбинации, нужно преобразовать в полином степени не более п-1, который без остатка делится на образующий полином Р(х). Существенно при этом, что степень последнего соответствует числу разрядов проверочной части кодовой комбинации. В циклических кодах все разрешенные комбинации, представленные в виде полиномов, обладают одним признаком: делимостью без остатка на образующий полином Р(х). Построение разрешенной кодовой комбинации сводится к следующему: 1. Представляем информационную часть кодовой комбинации длиной к в виде полинома О(х). 2. Умножаем О(х) на одночлен У и получаем 0(х)х г, т. е. производим сдвиг ¿-разрядной кодовой комбинации на г разрядов. 3. Делим многочлен О (х)х" на образующий полином Р(х), степень которого равна г. В результате умножения О(х) на х г степень каждого одночлена, входящего в О(х), повышается на г. При делении произведения х г О[х) на образующий полином степени г получается частное С(х) такой же степени, что и 0{х). Результаты этих операций можно представить в виде: (8.28) где Щх) -остаток от деления 0(х)х г на Р(х). Поскольку С(х) имеет такую же степень, что и 0{х), то С(х) представляет собой кодовую комбинацию того же ¿-разрядного кода. Степень остатка не может быть, очевидно, больше степени образующего полинома, т. е. его наивысшая степень равна г-1. Следовательно, наибольшее число разрядов остатка не превышает г. Умножив обе части (8.28) на Р(х), ползшим: (8.29) (знак вычитания заменяется знаком сложения по модулю 2). Очевидно, что F(x) делится на Р(х) без остатка. Полином F(x) представляет собой разрешенную кодовую комбинацию циклического кода. Из (8.29) следует, что разрешенную кодовую комбинации циклического кода можно получить двумя способами: умножением кодовой комбинации простого кода С(х) на образующий полином Р(х) или умножением кодовой комбинации 0{х) простого кода на одночлен х г к добавлением к этому произведению остатка Р(х), полученного в результате деления произведения на образующий полином Р(х). При первом способе кодирования информационные и проверочные разряды не отделены друг от друга (код получается неразделимым). Это затрудняет практическую реализацию процесса декодирования. При втором способе получается разделимый код: информационные разряды занимают старшие позиции, остальные п-к разряды являются проверочными. Этот способ кодирования широко применяется на практике. Пример 3. Дана кодовая комбинация 0111. Построим циклический код с d o = 3. Решение. На первом этапе исходя из требуемого d o = 3 определим длину кода л и количество проверочных элементов к. Для этого воспользуемся таблицей 8.6.1. Для заданной четырехразрядной кодовой комбинации N-16. Тогда для d = 3 из соотношения 16(табл. 8.3) находим п - 7, соответственно, к = п - т - = 7 - 4 = 3. Следовательно, необходим код (7,4). По таблице образующих полиномов (табл. 8.4) при к = 3 определяем Р(х) = х 3 + х 2 + 1. Далее: 1) для сообщения 0111 имеем О(х) = х 2 + х + 1; 2) умножаем 0(х) на х 3 (так как г = 3): О(х) х 3 = (х 2 -I- х + 1) х 3 = х 5 + х 4 + х 3 ; 3) делим (Э(х)х 3 на Р(х): 4) получаем: ^(х) = О (х) х 3 0 Я (х) = х 5 + х 4 + х 3 + 1. Этот полином соответствует кодовой комбинации: Все указанные операции можно производить и над двоичными числами: Таблица 8.4
4) F(0,1) = O(0,l)x 3 (0,l)©R(0 1 l) = 011100000001= 0111 001. Построим теперь разрешенную кодовую комбинацию первым способом: F(x)=C(x)P(x). Произведем умножение, представляя полиномы двоичными числами: Видно, что в полученной кодовой комбинации нельзя выделить информационные и проверочные разряды. Обнаружение ошибок при циклическом кодировании сводится к делению принятой кодовой комбинации на тот же образующий полином, который использовался при кодировании (его вид должен быть известен на приеме). Если ошибок в принятой кодовой комбинации нет (или они такие, что данную передаваемую кодовую комбинацию превращают в другую разрешенную), то деление на образующий полином будет выполнено без остатка. Если при делении получится остаток, то это и свидетельствует о наличии ошибки. Пример 4. В качестве разрешенной кодовой комбинации возьмем кодовую комбинацию, полученную в предыдущем примере: Р(х)=х 5 +х 4 + х 3 + 1, а Р(х) = х 3 + х 2 +1, или в двоичном виде Е(0,1) = 0111001; Р(0,1) = 1101. Допустим, что в информационной части произошла ошибка в старшем (7-м) разряде (разряды счита- ем справа налево). Принятая кодовая комбинация имеет вид 1111001. Произведем операцию обнаружения ошибки: Наличие остатка 110 свидетельствует об ошибке. Циклические коды находят большое применение в системах передачи информации. Например, в широко распространенном модемном протоколе \7.42 для кодирования кодовых групп используется образующий полином д(Х)= X 16 + X" -2 + X 5 + 1, что эквивалентно коду 1 0001 0000 0010 0001, а также образующий полином более высокого порядка д(Х) = X 32 + X 26 + X 23 + X 22 + X 16 + X 12 + X 11 + X 10 + X 8 + X 1 + X 5 + X 4 + X 2 + 1. 8.6.

Циклические коды являются разновидностью линейных групповых кодов и относятся к систематическим кодам. Первоначально были созданы для упрощения процедуры декодирования. Однако высокая эффективность к обнаружению ошибок таких кодов обеспечила их широкое применение на практике. Двоичный вектор циклического кода удобно рассматривать не как комбинацию нулей и единиц, а в виде полинома некоторой степени

где х - основание системы счисления, коэффициенты, принадлежащие множеству в случае двоичной системы счисления.

Пример. Двоичный вектор может быть представлен в виде полинома следующим образом:

Представление двоичных векторов в виде полиномов позволяет свести действие над векторами к действиям над многочленами. При этом:

сложение многочленов сводится к сумме по модулю 2 коэффициентов при равных степенях переменной

умножение производится по обычному правилу умножения степенных функций, однако полученные коэффициенты при данной степени складываются по модулю 2;

деление осуществляется по правилам деления степенных функций, при этом операция вычитания заменяется суммированием по модулю 2.

Пример. Найти сумму многочленов

Найти произведение многочленов

Выполнить деление многочленов

Основным свойством циклических кодов является следующее: если вектор принадлежит циклическому коду, то любой вектор, полученный из рассматриваемого с помощью циклических сдвигов, также принадлежит циклическому коду.

Идея построения циклических кодов базируется на понятии неприводимого многочлена. Многочлен называется неприводимым, если он делится только на самого себя и на единицу, и не делится ни на какой другой многочлен. Иными словами, неприводимый многочлен нельзя представить в виде произведения многочленов низших степеней. На неприводимый многочлен без остатка делится многочлен . Неприводимые многочлены играют в теории циклических кодов роль образующих полиномов. Виды неприводимых многочленов различных степеней приведены в

Примеры неприводимых многочленов:

Векторы циклического кода строятся в соответствий со следующими правилами. Пусть - любой двоичный вектор некоторого натурального кода; - одночлен степени неприводимый полином степени Тогда любой вектор циклического кода образуется с помощью соотношения

где остаток от деления

Таким образом, любой вектор циклического кода может быть образован умножением некоторого вектора натурального двоичного кода на одночлен степени с добавлением к полученному произведению остатка от деления При построении циклических кодов указанным способом расположение информационных разрядов в каждом векторе кода строго упорядочено - они занимают старших разрядов вектора кода, а остальные разрядов являются проверочными.

Пример. Вектор натурального двоичного кода имеет вид Образовать из негр вектор циклического кода при условии, что образующий полином имеет вид

Представим вектор в виде полинома

В результате деления полинома на полином получаем остаток . Поэтому

Циклический код, как и всякий систематический код, удобно задавать в матричном виде с помощью порождающей матрицы имеющей вид

где - транспонированная единичная йатрица формата - матрица проверочных разрядов, образованная остатком от деления

Зададим порождающую матрицу циклического кода длиной информационными разрядами и порождающим полиномом .

Очевидно, заготовка для порождающей матрицы имеет вид

Для нахождения строк проверочных разрядов матрицы вычислим и запишем в виде полинома каждый вектор единичной матрицы

Длина вектора циклического кода поэтому

(см. скан)

В результате получаем порождающую матрицу С:

Любой вектрр циклического кода получается как сумма по моду векторов его порождающей матрицы. Так как циклический код является групповым, то нулевой вектор всегда приписывается циклическому коду как единичный элемент группы»

Таблица 13.5

Пример. Построить все векторы циклического кода, заданного порождающей матрицей

Код представлен в табл. 13.5.

Необходимо отметить, что каждый циклический код, заданный некоторой порождающей матрицей, можно представить в нескольких вариантах, отличающихся друг от друга длиной и количеством информационных разрядов (при одинаковых обнаруживающих способностях). Эти варианты так называемых укороченных циклических кодов получаются вычеркиванием последних строк и такого же количества столбцов слева в порождающей матрице циклического кода. При этом число проверочных разрядов остается неизменным, а длина кода и число его информационных разрядов уменьшаются соответственно на величину, равную числу вычеркнутых строк и столбцов порождающей матрицы.

Пример, Циклический код задан своей порождающей матрицей

Вычеркнем из шесть последних строк и шесть первых слева столбцов. Получим порождающую матрицу

Характеристики (в смысле обнаружения ошибок) полученного кода такие же, как и циклического кода, представленного порождающей матрицей

Построение циклических кодов с заданными параметрами связано с выбором образующего неприводимого полинома. Образующий полином выбирается исходя из следующего условия: степень полинома должна быть равна числу проверочных разрядов циклического кода.

На практике часто возникает задача построения циклического кода заданной мощности и заданной обнаруживающей и корректирующей способностей.

1. Так как мощность циклического кода задана, то число его информационных разрядов определяется в соответствии с формулой

2. Оптимальное число проверочных разрядов циклического кода определяется по специальным таблицам .

3. По справочникам находятся все неприводимые полиномы степени

4. Для одного из непроводимых многочленов (следует выбирать многочлен с максимальным числом членов) степени строится порождающая матрица циклического кода. Каждый вектор кода вычисляется по формуле

где - полином информационного вектора порождающей матрицы; - одночлен степени - остаток от деления

5. Построенная порождающая матрица проверяется на выполнение следующих условий:

а) вес в смысле Хэмминга любого вектора порождающей матрицы должен удовлетворять соотношению где - минимальное расстояние, в смысле Хэмминга рассматриваемого циклического кода;

б) вес в смысле Хэмминга проверочного вектора, являющегося суммой по модулю 2 любых двух проверочных векторов порождающей матрицы, должен удовлетворять соотношению

6. Если порождающая матрица циклического кода удовлетворяет всем приведенным условиям, то выписываются все векторы циклического кода и определяется в соответствии с известными правилами для линейных групповых кодов. Если код не соответствует требованиям, то выбирается другой порождающий полином той же степени и процедура образования циклического кода повторяется для нового полинома.

Построим циклический код мощностью 16 и корректирующей с по собностью

Для определяем значение по

3» По справочникам находим все неприводимые полиномы степени Таких полиномов два:

4. Выбираем в качестве образующего полином Заготовка порождающей матрицы циклического кода имеет вид

Каждый информационный вектор из матрицы представляем полиномом

Определяем полностью все векторы порождающей матрицы, используя формулу

Так как длина вектора циклического кода (см. формат порождающей матрицы то

Аналогично находим все остальные векторы порождающей мат рицы

Таблица 13.6

В результате получена порождающая матрица С? циклического кода

5. Полученная порождающая матрица удовлетворяет всем необходимым условиям. Поэтому строим циклический код полностью (табл. 13.6). Как следует из таблицы, код имеет т. е. удовлетворяет требованиям задачи.

Замечания. При использовании неприводимого полинома в качестве порождающего получаем код, также удовлетворяющий требованиям задачи. Его порождающая матрица имеет вид

Обнаружение ошибок с помощью циклических кодов производится следующим образом. Любой вектор циклического кода делится на образующий полином без остатка. Поэтому критерием наличия ошибки в векторе циклического кода является появление ненулевого остатка от деления вектора циклического кода на образующий полином. Ненулевой остаток является опознавателем ошибки в векторе циклического кода, однако его вид не указывает на место расположения ошибки в кодовом векторе. Исправление ошибок базируется на следующем алгоритме:

1. Принятый кодовый вектор разделить на образующий полином.

Если число единиц не превышает корректирующей способности кода, то принятый вектор сложить по модулю 2 с полученным остатком. Результат суммирования даст исправленный кодовый вектор. Если число единиц остатка больше корректирующей способности кода, то осуществить циклический сдвиг искаженного вектора влево на один разряд, а затем произвести деление на образующий полином. Если полученный остаток содержит единиц не больше корректирующей способности циклического кода, то произвести суммирование сдвинутого циклически вектора с остатком. Результат суммирования сдвинуть циклически на один разряд вправо. Полученный вектор уже не содержит ошибок и является вектором циклического кода.

3. Если после первого циклического сдвига и последующего деления остаток содержит единиц больше, чем корректирующая способность кода, то повторять процедуру алгоритма до тех пор, пока не будет получен остаток с числом единиц, не превышающим корректирующей способности кода. В этом случае результат последнего циклического сдвига суммируется с остатком и полученный вектор циклически сдвигается на столько разрядов вправо, на сколько был сдвинут влево исходный принятый вектор с ошибкой. В итоге получается исправленный кодовый вектор.

Пусть циклический код задан своей порождающей матрицей С и образующим полиномом , где

Код имеет в 3, т. е. корректирует ошибки кратности Пусть вместо вектора 0001101 принят вектор 0011101. Для исправления ошибки осуществляем следующие действия. Принятый вектор записываем в виде полинома: затем делим на

Полученный в результате деления остаток содержит три единицы, что больше, чем корректирующая способность кода. Поэтому делаем циклический сдвиг влево на один разряд принятого кодового вектора. В результате имеем

Осуществляем деление на

Полученный остаток содержит две единицы, что больше, чем корректирующая способность кода. Поэтому делаем еще один циклический сдвиг влево на один разряд принятого кодового вектора. В результате имеем

Осуществляем деление на

Полученный остаток снова содержит две единицы, поэтому делаем еще один циклический сдвиг влево на один разряд и получаем Делим на

Простейший циклический код с позволяет обнаруживать одиночные ошибки и ошибки нечетной кратности. Образующий полином этого кода имеет вид Среди неприводимых многочленов, входящих в разложение данный полином является многочленом наименьшей степени Таким образом, при любом числе информационных разрядов необходим только один проверочный разряд. Значение символа этого разряда обеспечивает четность числа единиц в любой разрешенной кодовой комбинации. Полученный циклический код с проверкой на четность способен обнаруживать не только одиночные ошибки в отдельных разрядах, но и ошибки в любом нечетном числе разрядов.

Пример. Построить циклический код для Поскольку образующий полином является полиномом 1-й степени, число проверочных разрядов Следовательно, Для построения циклического кода строим производящую матрицу

Для построения дополнительной матрицы находим остатки от деления поаледней строки единичной транспонированной матрицы, дополненной нулями, на выбранный полином:

Таким образом, дополнительная матрица С, к имеет вид

Теперь строим производящую матрицу

Строки данной матрицы являются тремя первыми комбинациями кода. Остальные из разрешенных комбинаций могут быть получены суммированием по модулю два всевозможных сочетаний строк матрицы Полученные разрушенные кодовые комбинации приведены в табл. 39.

Таблица 39 (см. скан)

Известный интерес представляет рассмотрение следующего простейшего кода с образованного с помощью неприводимого полинома второй степени

Общий вид производящей матрицы циклического кода, образованного полиномом отличается структурой дополнительной матрицы имеющей два столбца.

Легко убедиться, что при делении на данный образующий многочлен одночленов, выражающих строки

единичной матрицы (для нахождения дополнительной матрицы образуется. три вида остатков: 11, 01 и 10. Следовательно, вес каждой комбинации полученного -кода будет не менее двух. Минимальное кодовое расстояние между двумя любыми комбинациями также равно двум. Но такими же величинами характеризуется и простейший код с одной проверкой на четность, образованный двучленом первой степени Однако корректирующая способность обоих кодов неодинакова. Рассматриваемый код имеет большую избыточность и позволяет обнаруживать не только любые ошибки нечетной кратности, но и любые парные смежные ошибки, а также все ошибки, разделенные одним неискаженным элементом .

Это подкласс линейных кодов, обладающих гем свойством, что циклическая перестановка символов в кодированном блоке дает другой возможный кодированный блок того же кода. Циклические коды основаны на применении идей алгебраической теории полей Галуа1.

Многие важнейшие помехоустойчивые коды систем связи, -

в частности циклические, основаны на структурах конечных Арифметика

полей Галуа. Полем называется множество элементов, которые конечного поля

звания операций взяты в кавычки, потому что они не всегда являются общепринятыми арифметическими операциями. В поле всегда имеется нулевой элемент (0), или нуль, и единичный элемент (1), или единица. Если число q элементов поля ограничено, то поле называется конечным полем , или конечным полем Галуа , и обозначается GF(q) y где q - порядок поля. Наименьшим полем Галуа является двухэлементное иоле GF(2), состоящее всего из двух элементов 1 и 0. Для того чтобы

1 Эварист Галуа (Evariste Galois, 1811 - 1832) - французский математик, заложил основы современной алгебры.

выполнение операций над элементами GF(2) не приводило к выходу за пределы этого поля, они осуществляются по модулю 2 (вообще это определяется порядком поля для простых полей Галуа).

Поле обладает рядом специфических математических свойств. Для элементов поля определены операции сложения и умножения, причем результаты этих операций должны принадлежать этому же множеству.

Для операций сложения и умножения выполняются обычные математические правила ассоциативности - а + + с) = (а + Ь) + с, коммутативности - а + b = b + а и а b = b а и дистрибутивности - а + с) = а b + а с.

Для каждого элемента поля а должны существовать обратный элемент по сложению (-а) и, если а не равно нулю, обратный элемент по умножению (й ’).

Поле должно содержать аддитивную единицу - элемент 0, такой, что а + 0 = а для любого элемента поля а.

Поле должно содержать мультипликативную единицу - элемент 1, такой, что аЛ = а для любого элемента поля а.

Например, существуют поля вещественных чисел, рациональных чисел, комплексных чисел. Эти поля содержат бесконечное число элементов.

Фактически все наборы, образованные циклической перестановкой кодовой комбинации, также являются кодовыми комбинациями. Так, например, циклические перестановки комбинации 1000101 будут также кодовыми комбинациями 0001011, 0010110, 0101100 и т.д. Это свойство позволяет в значительной степени упростить кодирующее и декодирующее устройства, особенно при обнаружении ошибок и исправлении одиночной ошибки. Внимание к циклическим кодам обусловлено тем, что присущие им высокие корректирующие свойства реализуют на основе сравнительно простых алгебраических методов. В то же время для декодирования произвольного линейного блокового кода чаще применяют табличные методы, требующие большой объем памяти декодера.

Циклическим кодом называется линейный блоковый (п, k)- код, который характеризуется свойством цикличности, т.е. сдвиг влево на один шаг любого разрешенного кодового слова дает также разрешенное кодовое слово, принадлежащее этому же коду, и у которого множество кодовых слов представляется совокупностью многочленов степени (п - 1) и менее, делящихся на порождающий многочлен g(x) степени r=n-k y являющийся сомножителем двучлена х п+

В циклическом коде кодовые слова представляют многочленами (полиномами)

где п - длина кода; A i - коэффициенты поля Галуа (значений кодовой комбинации).

Например, для кодовой комбинации 101101 полиномиальная запись имеет вид

Примерами циклических кодов являются коды с четной проверкой, коды с повторениями, коды Хемминга, PC-коды и турбокоды.

Код Хемминга . Возможности исправления ошибок в коде Хемминга связаны с минимальным кодовым расстоянием d 0 . Исправляются все ошибки кратности q = cnt(d 0 - l)/2 (здесь cnt означает «целая часть») и обнаруживаются ошибки кратности d 0 - 1. Так, при контроле на нечетность d Q = 2 и обнаруживаются одиночные ошибки. В коде Хемминга d 0 = 3. Дополнительно к информационным разрядам вводится L = log 2 Q избыточных контролирующих разрядов, где Q - число информационных разрядов. Параметр L округляется до ближайшего большего целого значения. L-разрядный контролирующий код есть инвертированный результат поразрядного сложения (сложения по модулю 2) номеров тех информационных разрядов, значения которых равны единице.

Пример 7.7

Пусть имеем основной код 100110, т.е. Q = 6. Определим дополнительный код.

Решение

Находим, что L = 3 и дополнительный код равен

где П - символ операции поразрядного сложения, и после инвертирования имеем 000. Теперь с основным кодом будет передан и дополнительный. В приемнике вновь рассчитывают дополнительный код и сравнивают с переданным. Фиксируется код сравнения, и если он отличен от нуля, то его значение есть номер ошибочно принятого разряда основного кода. Так, если принят код 100010, го рассчитанный дополнительный код равен инверсии от 010Ш10 = 100, т.е. 011, что означает ошибку в 3-м разряде.

Обобщением кодов Хемминга являются циклические коды БЧХ, которые позволяют корректировать многократные ошибки в принятой кодовой комбинации.

Коды Рида - Соломона базируются на полях Галуа, или конечных нолях. Арифметические действия сложение, вычитание, умножение, деление и г.д. над элементами конечного ноля дают результат, который также является элементом этого ноля. Кодировщик или декодер Рида - Соломона должен обязательно выполнять эти операции. Все операции для реализации кода требуют специального оборудования или специализированного программного обеспечения.

Турбокоды. Избыточные коды могут применяться как самостоятельно, так и в виде некоторого объединения нескольких кодов, когда наборы символов одного избыточного кода рассматриваются как элементарные информационные символы другого избыточного кода. Такое объединение стали называть каскадным кодом. Огромным достоинством каскадных кодов является то, что их применение позволяет упростить кодер и особенно декодер по сравнению с аналогичными устройствами некаскадных кодов той же длины и избыточности. Каскадное кодирование привело к созданию турбокодов. Турбокодом называют параллельную структуру сигнала, состоящую из двух или большего числа систематических кодов. Основной принцип их построения - использование нескольких параллельно работающих компонентных кодеров. В качестве компонентных можно использовать как блочные, так и сверточные коды, коды Хемминга, PC-код, БЧХ и др. Использование перфорации (выкалывания) позволяет увеличить относительную скорость турбокода, адаптировав его исправляющую способность к статистическим характеристикам канала связи. Принцип формирования турбокода состоит в следующем: входной сигнал х, состоящий из К бит, подается параллельно на N перемежителей. Каждый из последних представляет собой устройство, осуществляющее перестановку элементов в блоке из К бит в псевдослучайном порядке. Выходной сигнал с перемежителей - символы с измененным порядком следования - поступает на соответствующие элементарные кодеры. Двоичные последовательности х р i = 1,2,..., JV, на выходе кодера представляют собой проверочные символы, которые вместе с информационными битами составляют единое кодовое слово. Применение перемежителя позволяет предотвратить появление последовательностей коррелированных ошибок при декодировании турбокодов, что немаловажно при использовании традиционного в обработке рекурентного способа декодирования. В зависимости от выбора компонентного кода турбокоды делятся на сверточные турбокоды и блоковые коды-произведения.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра РЭС

реферат на тему:

«Циклические коды. Коды БЧХ»

МИНСК, 2009

Циклические коды

Циклическим кодом называется линейный блоковый (n,k)-код, который характеризуется свойством цикличности, т.е. сдвиг влево на один шаг любого разрешенного кодового слова дает также разрешенное кодовое слово, принадлежащее этому же коду и у которого, множество кодовых слов представляется совокупностью многочленов степени (n-1) и менее, делящихся на некоторый многочлен g(x) степени r = n-k, являющийся сомножителем двучлена x n +1.

Многочлен g(x) называется порождающим.

Как следует из определения, в циклическом коде кодовые слова представляются в виде многочленов


где n - длина кода; - коэффициенты из поля GF(q).

Если код построен над полем GF(2), то коэффициенты принимают значения 0 или 1 и код называется двоичным.
Пример. Если кодовое слово циклического кода

то соответствующий ему многочлен

Например, если код построен над полем GF(q)=GF(2 3), которое является расширением GF(2) по модулю неприводимого многочлена f(z)=z 3 +z+1, а элементы этого поля имеют вид, представленный в таблице 1,

то коэффициенты

принимают значения элементов этого поля и поэтому они сами отображаются в виде многочленов следующего вида
где m - степень многочлена, по которому получено расширение поля GF(2);\ a i - коэффициенты, принимающие значение элементов GF(2), т.е. 0 и 1. Такой код называется q-ным.

Длина циклического кода называется примитивной и сам код называется примитивным, если его длина n=q m -1 на GF(q).

Если длина кода меньше длины примитивного кода, то код называется укороченным или непримитивным.

Как следует из определения общее свойство кодовых слов циклического кода - это их делимость без остатка на некоторый многочлен g(x), называемый порождающим.

Результатом деления двучлена x n +1 на многочлен g(x) является проверочный многочлен h(x).

При декодировании циклических кодов используются многочлен ошибок e(x) и синдромный многочлен S(x).

Многочлен ошибок степени не более (n-1) определяется из выражения

где - многочлены, отображающие соответственно принятое (с ошибкой) и переданное кодовые слова.

Ненулевые коэффициенты в е(x) занимают позиции, которые соответствуют ошибкам.

Пример.

Синдромный многочлен, используемый при декодировании циклического кода, определяется как остаток от деления принятого кодового слова на порождающий многочлен, т.е.


или

Следовательно, синдромный многочлен зависит непосредственно от многочлена ошибок е(х).Это положение используется при построении таблицы синдромов, применяемой в процессе декодирования. Эта таблица содержит список многочленов ошибок и список соответствующих синдромов, определяемых из выражения

(см. таблицу 2).

В процессе декодирования по принятому кодовому слову вычисляется синдром, затем в таблице находится соответствующий многочлен е(х), суммирование которого с принятым кодовым словом дает исправленное кодовое слово, т.е.

Перечисленные многочлены можно складывать, умножать и делить, используя известные правила алгебры, но с приведением результата по mod 2, а затем по mod x n +1, если степень результата превышает степень (n-1).

Допустим, что длина кода n=7, то результат приводим по mod x 7 +1.

При построении и декодировании циклических кодов в результате деления многочленов обычно необходимо иметь не частное, а остаток от деления.
Поэтому рекомендуется более простой способ деления, используя не многочлены, а только его коэффициенты (вариант 2 в примере).

Пример.

Матричное задание кодов

Циклический код может быть задан порождающей и проверочной матрицами. Для их построения достаточно знать порождающий g(x) и проверочный h(x) многочлены. Для несистематического циклического кода матрицы строятся циклическим сдвигом порождающего и проверочного многочленов, т.е. путем их умножения на x

и

При построении матрицы H (n,k) старший коэффициент многочлена h(x) располагается справа.

Пример. Для циклического (7,4)-кода с порождающим многочленом g(x)=x 3 +x+1 матрицы G (n,k) и H (n,k) имеют вид:

где

Для систематического циклического кода матрица G (n,k) определяется из выражения

где I k - единичная матрица; R k,r - прямоугольная матрица. Строки матрицы R k,r определяются из выражений или где a i (x) - значение i-той строки матрицы I k ; i - номер строки матрицы R k,r .

Пример. Матрица G (n,k) для (7,4)-кода на основе порождающего многочлена g(x)=x 3 +x+1, строится в следующей последовательности


или

Определяется R 4,3 , используя

так как

Аналогичным способом определяется