Сжатие информации является главной целью анализа. Процесс кодирования и его методы. Избыточность естественных языков

Как было сказано выше, одной из важных задач предварительной подготовки данных к шифрованию является уменьшение их избыточности и выравнивание статистических закономерностей применяемого языка. Частичное устранение избыточности достигается путём сжатия данных.

Сжатие информации представляет собой процесс преобразования исходного сообщения из одной кодовой системы в другую, в результате которого уменьшается размер сообщения . Алгоритмы, предназначенные для сжатия информации, можно разделить на две большие группы: реализующие сжатие без потерь (обратимое сжатие) и реализующие сжатие с потерями (необратимое сжатие).

Обратимое сжатие подразумевает абсолютно точное восстановление данных после декодирования и может применяться для сжатия любой информации. Оно всегда приводит к снижению объема выходного потока информации без изменения его информативности, то есть без потери информационной структуры. Более того, из выходного потока, при помощи восстанавливающего или декомпрессирующего алгоритма, можно получить входной , а процесс восстановления называется декомпрессией или распаковкой и только после процесса распаковки данные пригодны для обработки в соответствии с их внутренним форматом. Сжатие без потерь применяется для текстов, исполняемых файлов, высококачественного звука и графики.

Необратимое сжатие имеет обычно гораздо более высокую степень сжатия, чем кодирование без потерь, но допускает некоторые отклонения декодированных данных от исходных. На практике существует широкий круг практических задач, в которых соблюдение требования точного восстановления исходной информации после декомпрессии не является обязательным. Это, в частности, относится к сжатию мультимедийной информации: звука, фото- или видеоизображений. Так, например, широко применяются форматы мультимедийной информации JPEG и MPEG , в которых используется необратимое сжатие. Необратимое сжатие обычно не используется совместно с криптографическим шифрованием, так как основным требованием к криптосистеме является идентичность расшифрованных данных исходным. Однако при использовании мультимедиа-технологий данные, представленные в цифровом виде, часто подвергаются необратимой компрессии перед подачей в криптографическую систему для шифрования. После передачи информации потребителю и расшифрования мультимедиа-файлы используются в сжатом виде (то есть не восстанавливаются).

Рассмотрим подробнее некоторые из наиболее распространённых способов обратимого сжатия данных.

Наиболее известный простой подход и алгоритм сжатия информации обратимым путем – это кодирование серий последовательностей (Run Length Encoding – RLE ). Суть методов данного подхода состоит в замене цепочек или серий повторяющихся байтов на один кодирующий байт -заполнитель и счетчик числа их повторений. Проблема всех аналогичных методов заключается лишь в определении способа, при помощи которого распаковывающий алгоритм мог бы отличить в результирующем потоке байтов кодированную серию от других, – не кодированных последовательностей байтов. Решение проблемы достигается обычно простановкой меток вначале кодированных цепочек. Такими метками могут быть характерные значения битов в первом байте кодированной серии, значения первого байта кодированной серии. Недостатком метода RLE является достаточно низкая степень сжатия или стоимость кодирования файлов с малым числом серий и, что еще хуже – с малым числом повторяющихся байтов в сериях.

При равномерном кодировании информации на сообщение отводится одно и то же число бит , независимо от вероятности его появления. Вместе с тем логично предположить, что общая длина передаваемых сообщений уменьшится, если часто встречающиеся сообщения кодировать короткими кодовыми словами, а редко встречающиеся – более длинными. Возникающие при этом проблемы связаны с необходимостью использования кодов с переменной длиной кодового слова . Существует множество подходов к построению подобных кодов.

Одними из широко используемых на практике являются словарные методы, к основным представителям которых относятся алгоритмы семейства Зива и Лемпела. Их основная идея заключается в том, что фрагменты входного потока ("фразы") заменяются указателем на то место , где они в тексте уже ранее появлялись. В литературе подобные алгоритмы обозначаются как алгоритмы LZ сжатия .

Подобный метод быстро приспосабливается к структуре текста и может кодировать короткие функциональные слова, так как они очень часто в нем появляются. Новые слова и фразы могут также формироваться из частей ранее встреченных слов. Декодирование сжатого текста осуществляется напрямую, – происходит простая замена указателя готовой фразой из словаря, на которую тот указывает. На практике LZ-метод добивается хорошего сжатия, его важным свойством является очень быстрая работа декодера.

Другим подходом к сжатию информации является код Хаффмана , кодер и декодер которого имеют достаточно простую аппаратную реализацию. Идея алгоритма состоит в следующем: зная вероятности вхождения символов в сообщение, можно описать процедуру построения кодов переменной длины, состоящих из целого количества битов. Символам с большей вероятностью присваиваются более короткие коды, тогда как реже встречающимся символам – более длинные. За счет этого достигается сокращение средней длины кодового слова и большая эффективность сжатия. Коды Хаффмана имеют уникальный префикс (начало кодового слова), что и позволяет однозначно их декодировать, несмотря на их переменную длину.

Процедура синтеза классического кода Хаффмана предполагает наличие априорной информации о статистических характеристиках источника сообщений. Иначе говоря, разработчику должны быть известны вероятности возникновения тех или иных символов, из которых образуются сообщения. Рассмотрим синтез кода Хаффмана на простом примере.

p(S 1)=0,2, p(S 2)=0,15, p(S 3)=0,55, p(S 4)=0,1 . Отсортируем символы по убыванию вероятности появления и представим в виде таблицы ( рис. 14.3 , а).

Процедура синтеза кода состоит из трех основных этапов. На первом происходит свертка строк таблицы: две строки, соответствующие символам с наименьшими вероятностями возникновения заменяются одной с суммарной вероятностью, после чего таблица вновь переупорядочивается. Свертка продолжается до тех пор, пока в таблице не останется лишь одна строка с суммарной вероятностью, равной единице ( рис. 14.3 , б).


Рис. 14.3.

На втором этапе осуществляется построение кодового дерева по свернутой таблице ( рис. 14.4 , а). Дерево строится, начиная с последнего столбца таблицы.


Рис. 14.4.

Корень дерева образует единица , расположенная в последнем столбце. В рассматриваемом примере эта единица образуется из вероятностей 0,55 и 0,45 , изображаемых в виде двух узлов дерева, связанных с корнем. Первый из них соответствует символу S 3 и, таким образом, дальнейшее ветвление этого узла не происходит.

Второй узел, маркированный вероятностью 0,45 , соединяется с двумя узлами третьего уровня, с вероятностями 0,25 и 0,2 . Вероятность 0,2 соответствует символу S 1 , а вероятность 0,25 , в свою очередь , образуется из вероятностей 0,15 появления символа S 2 и 0,1 появления символа S 4 .

Ребра, соединяющие отдельные узлы кодового дерева, нумеруются цифрами 0 и 1 (например, левые ребра – 0 , а правые – 1 ). На третьем, заключительном этапе, строится таблица , в которой сопоставляются символы источника и соответствующие им кодовые слова кода Хаффмана. Эти кодовые слова образуются в результате считывания цифр, которыми помечены ребра, образующие путь от корня дерева к соответствующему символу. Для рассматриваемого примера код Хаффмана примет вид, показанный в таблице справа ( рис. 14.4 , б).

Однако классический алгоритм Хаффмана имеет один существенный недостаток. Для восстановления содержимого сжатого сообщения декодер должен знать таблицу частот, которой пользовался кодер . Следовательно, длина сжатого сообщения увеличивается на длину таблицы частот, которая должна посылаться впереди данных, что может свести на нет все усилия по сжатию сообщения.

Другой вариант статического кодирования Хаффмана заключается в просмотре входного потока и построении кодирования на основании собранной статистики. При этом требуется два прохода по файлу – один для просмотра и сбора статистической информации, второй – для кодирования. В статическом кодировании Хаффмана входным символам (цепочкам битов различной длины) ставятся в соответствие цепочки битов также переменной длины – их коды. Длина кода каждого символа берется пропорциональной двоичному логарифму его частоты, взятому с обратным знаком. А общий набор всех встретившихся различных символов составляет алфавит потока.

Существует другой метод – адаптивного или динамического кодирования Хаффмана . Его общий принцип состоит в том, чтобы менять схему кодирования в зависимости от характера изменений входного потока. Такой подход имеет однопроходный алгоритм и не требует сохранения информации об использованном кодировании в явном виде. Адаптивное кодирование может дать большую степень сжатия, по сравнению со статическим, поскольку более полно учитываются изменения частот входного потока. При использовании адаптивного кодирования Хаффмана усложнение алгоритма состоит в необходимости постоянной корректировки дерева и кодов символов основного алфавита в соответствии с изменяющейся статистикой входного потока.

Методы Хаффмана дают достаточно высокую скорость и умеренно хорошее качество сжатия. Однако кодирование Хаффмана имеет минимальную избыточность при условии, что каждый символ кодируется в алфавите кода символа отдельной цепочкой из двух бит – {0, 1} . Основным же недостатком данного метода является зависимость степени сжатия от близости вероятностей символов к 2 в некоторой отрицательной степени, что связано с тем, что каждый символ кодируется целым числом бит .

Совершенно иное решение предлагает арифметическое кодирование . Этот метод основан на идее преобразования входного потока в одно число с плавающей запятой. Арифметическое кодирование является методом, позволяющим упаковывать символы входного алфавита без потерь при условии, что известно распределение частот этих символов.

Предполагаемая требуемая последовательность символов при сжатии методом арифметического кодирования рассматривается как некоторая двоичная дробь из интервала <имя архива> [пути файлов]

Ключи: -rp архивация с подкаталогами с сохранением структуры

SPWD защита архива паролем (PWD)

A добавить файлы в архив

M переместить файлы в архив

V просмотр содержимого архива

Если производится архивация всех файлов каталога, то обязательно указывать маску *.*

Распаковка файлов pkunzip [ключи] <имя архива> [имена файлов]

Ключи: -d распаковка с подкаталогами с сохранением структуры

SPWD пароль архива (PWD)


Архиватор arj

arj <команда> [ключи] <имя архива> [имена файлов]

Для архиватора arj один файл выполняет операции и распаковки и запаковки.

Команды: a архивация

e распаковка без сохранения структуры каталогов

x распаковка с сохранением структуры

l просмотр содержимого архива

m переместить файлы в архив

d удалить файлы из архива

Ключи: -r упаковка с подкаталогами с сохранением структуры

V разбивка архива на тома с объемом vol(если указан)

размер для стандартных дискет (360, 720, 1200, 1440) указывается в килобайтах, размер нестандартных дискет указывается в байтах

V указывается при распаковке многотомного архива

GPWD пароль архива (PWD )

Запаковка файлов

Распаковка файлов

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

В наше время многие пользователи задумываются над тем, как осуществляется процесс сжатия информации с целью экономии свободного пространства на винчестере, ведь это один из наиболее эффективных средств использования полезного пространства в любом накопителе. Достаточно часто современным пользователям, которые сталкиваются с нехваткой свободного пространства на накопителе, приходится удалять какие-либо данные, пытаясь таким образом освободить нужное место, в то время как более продвинутые юзеры чаще всего используют сжатие данных с целью уменьшения ее объема.

Однако многие не знают даже, как называется процесс сжатия информации, не говоря о том, какие используются алгоритмы и что дает применение каждого из них.

Стоит ли сжимать данные?

Сжатие данных является достаточно важным на сегодняшний день и необходимо любому пользователю. Конечно, в наше время практически каждый может приобрести продвинутые накопители данных, предусматривающие возможность использования достаточно большого объема свободного пространства, а также оснащенные высокоскоростными каналами транслирования информации.

Однако при этом нужно правильно понимать, что с течением времени увеличивается также и объем тех данных, которые необходимо передавать. И если буквально десять лет назад стандартным для обычного фильма было принято считать объем 700 Мб, то на сегодняшний день фильмы, выполненные в HD-качестве, могут иметь объемы, равные нескольким десяткам гигабайт, не говоря уже о том, сколько свободного места занимают высококачественные картины в формате Blu-ray.

Когда сжатие данных необходимо?

Конечно, не стоит ждать того, что процесс сжатия информации принесет вам много пользы, однако существует определенный ряд ситуаций, при которых некоторые методы сжатия информации являются крайне полезными и даже необходимыми:

  • Передача определенных документов через электронную почту. В особенности это касается тех ситуаций, когда нужно передать информацию в большом объеме, используя различные мобильные устройства.
  • Часто процесс сжатия информации с целью уменьшения занимаемого ей места используется при публикации определенных данных на различных сайтах, когда требуется сэкономить трафик;
  • Экономия свободного пространства на жестком диске в том случае, когда нет возможности провести замену или же добавить новые средства хранения данных. В частности, наиболее распространенной ситуацией является та, когда присутствуют определенные ограничения в доступном бюджете, но при этом не хватает свободного дискового пространства.

Конечно, помимо вышеприведенных, есть еще огромнейшее количество различных ситуаций, при которых может потребоваться процесс сжатия информации с целью уменьшения ее объема, однако эти являются на сегодняшний день наиболее распространенными.

Как можно сжать данные?

Сегодня существуют самые разнообразные методы сжатия информации, однако все они делятся на две основные группы - это сжатие с определенными потерями, а также сжатие без потерь.

Использование последней группы методов является актуальным тогда, когда данные должны быть восстановлены с предельно высокой точностью, вплоть до одного бита. Такой подход является единственно актуальным в том случае, если осуществляется сжатие определенного текстового документа.

При этом стоит отметить тот факт, что в некоторых ситуациях нет необходимости в максимально точном восстановлении сжатых данных, поэтому предусматривается возможность использования таких алгоритмов, при которых сжатие информации на диске осуществляется с определенными потерями. Преимуществом сжатия с потерями является то, что такая технология гораздо более проста в реализации, а также обеспечивает максимально высокую степень архивации.

Сжатие с потерями

Информации с потерями обеспечивают на порядок лучшее сжатие, при этом сохраняя достаточное качество информации. В большинстве случаев использование таких алгоритмов осуществляется для сжатия аналоговых данных, таких как всевозможные изображения или же звуки. В таких ситуациях распакованные файлы могут достаточно сильно отличаться от оригинальной информации, однако для человеческого глаза или же уха они практически не отличимые.

Сжатие без потерь

Алгоритмы сжатия информации без потерь обеспечивают максимально точное восстановление данных, исключающее любые потери сжимаемых файлов. Однако при этом нужно правильно понимать тот факт, что в данном случае обеспечивается не настолько эффективное сжатие файлов.

Универсальные методы

Помимо всего прочего, существует определенный ряд универсальных методов, которыми осуществляется эффективный процесс сжатия информации с целью уменьшения занимаемого ей места. В общем случае можно выделить всего три основных технологии:

  • Преобразование потока. В данном случае описание новой поступающей несжатой информации осуществляется через уже обработанные файлы, при этом не осуществляется вычисление каких-либо вероятностей, а производится кодирование символов на основе исключительно тех файлов, которые уже подвергались определенной обработке.
  • Статистическое сжатие. Данный процесс сжатия информации с целью уменьшения занимаемого ей на диске места распределяется на две подкатегории - адаптивные и блочные методы. Адаптивный вариант предусматривает вычисление вероятностей для новых файлов по информации, которая уже обрабатывалась в процессе кодирования. В частности, к таким методам следует также отнести различные адаптивные варианты алгоритмов Шеннона-Фано и Хаффмана. Блочный алгоритм предусматривает отдельное высчитывание каждого блока информации с последующим добавлением к самому сжатому блоку.
  • Преобразование блока. Входящая информация распределяется на несколько блоков, а впоследствии происходит целостное трансформирование. При этом следует сказать о том, что определенные методы, особенно те, которые основываются на перестановке нескольких блоков, в конечном итоге могут привести к значительному снижению объема сжимаемой информации. Однако нужно правильно понимать, что после проведения такой обработки в конечном итоге происходит значительное улучшение вследствие чего проведение последующего сжатия через другие алгоритмы осуществляется гораздо более просто и быстро.

Сжатие при копировании

Одним из наиболее важных компонентов резервного копирования является то устройство, на которое будет перемещаться нужная пользователю информация. Чем больший объем данных вами будет перемещаться, тем более объемное устройство вам необходимо будет использовать. Однако если вами будет осуществляться процесс сжатия данных, то в таком случае проблема нехватки свободного пространства вряд ли останется для вас актуальной.

Зачем это нужно?

Возможность проведения сжатия информации при позволяет существенно снизить время, которое необходимо будет для копирования нужных файлов, и при этом добиться эффективной экономии свободного пространства на накопителе. Другими словами, при использовании сжатия информация будет копироваться гораздо более компактно и быстро, а вы сможете сэкономить свои деньги и финансы, которые необходимы были для покупки более объемного накопителя. Помимо всего прочего, осуществляя сжатие информации, вы также сокращаете время, которое понадобится при транспортировке всех данных на сервер или же их копировании через сеть.

Сжатие данных для резервного копирования может осуществляться в один или же несколько файлов - в данном случае все будет зависеть от того, какой именно программой вы пользуетесь и какую информацию подвергаете сжатию.

Выбирая утилиту, обязательно посмотрите на то, насколько выбранная вами программа может сжимать данные. Это зависит от типа информации, вследствие чего эффективность сжатия текстовых документов может составлять более 90%, в то время как будет эффективным не более чем на 5%.

GORKOFF 24 февраля 2015 в 11:41

Методы сжатия данных

  • Алгоритмы

Мы с моим научным руководителем готовим небольшую монографию по обработке изображений. Решил представить на суд хабрасообщества главу, посвящённую алгоритмам сжатия изображений. Так как в рамках одного поста целую главу уместить тяжело, решил разбить её на три поста:
1. Методы сжатия данных;
2. Сжатие изображений без потерь;
3. Сжатие изображений с потерями.
Ниже вы можете ознакомиться с первым постом серии.

На текущий момент существует большое количество алгоритмов сжатия без потерь, которые условно можно разделить на две большие группы:
1. Поточные и словарные алгоритмы. К этой группе относятся алгоритмы семейств RLE (run-length encoding), LZ* и др. Особенностью всех алгоритмов этой группы является то, что при кодировании используется не информация о частотах символов в сообщении, а информация о последовательностях, встречавшихся ранее.
2. Алгоритмы статистического (энтропийного) сжатия. Эта группа алгоритмов сжимает информацию, используя неравномерность частот, с которыми различные символы встречаются в сообщении. К алгоритмам этой группы относятся алгоритмы арифметического и префиксного кодирования (с использованием деревьев Шеннона-Фанно, Хаффмана, секущих).
В отдельную группу можно выделить алгоритмы преобразования информации. Алгоритмы этой группы не производят непосредственного сжатия информации, но их применение значительно упрощает дальнейшее сжатие с использованием поточных, словарных и энтропийных алгоритмов.

Поточные и словарные алгоритмы

Кодирование длин серий

Кодирование длин серий (RLE - Run-Length Encoding) - это один из самых простых и распространённых алгоритмов сжатия данных. В этом алгоритме последовательность повторяющихся символов заменяется символом и количеством его повторов.
Например, строку «ААААА», требующую для хранения 5 байт (при условии, что на хранение одного символа отводится байт), можно заменить на «5А», состоящую из двух байт. Очевидно, что этот алгоритм тем эффективнее, чем длиннее серия повторов.

Основным недостатком этого алгоритма является его крайне низкая эффективность на последовательностях неповторяющихся символов. Например, если рассмотреть последовательность «АБАБАБ» (6 байт), то после применения алгоритма RLE она превратится в «1А1Б1А1Б1А1Б» (12 байт). Для решения проблемы неповторяющихся символов существуют различные методы.

Самым простым методом является следующая модификация: байт, кодирующий количество повторов, должен хранить информацию не только о количестве повторов, но и об их наличии. Если первый бит равен 1, то следующие 7 бит указывают количество повторов соответствующего символа, а если первый бит равен 0, то следующие 7 бит показывают количество символов, которые надо взять без повтора. Если закодировать «АБАБАБ» с использованием данной модификации, то получим «-6АБАБАБ» (7 байт). Очевидно, что предложенная методика позволяет значительно повысить эффективность RLE алгоритма на неповторяющихся последовательностях символов. Реализация предложенного подхода приведена в Листинг 1:

  1. type
  2. function RLEEncode(InMsg: ShortString) : TRLEEncodedString;
  3. MatchFl: boolean ;
  4. MatchCount: shortint ;
  5. EncodedString: TRLEEncodedString;
  6. N, i: byte ;
  7. begin
  8. N : = 0 ;
  9. SetLength(EncodedString, 2 * length(InMsg) ) ;
  10. while length(InMsg) >= 1 do
  11. begin
  12. MatchFl : = (length(InMsg) > 1 ) and (InMsg[ 1 ] = InMsg[ 2 ] ) ;
  13. MatchCount : = 1 ;
  14. while (MatchCount <= 126 ) and (MatchCount < length(InMsg) ) and ((InMsg[ MatchCount] = InMsg[ MatchCount + 1 ] ) = MatchFl) do
  15. MatchCount : = MatchCount + 1 ;
  16. if MatchFl then
  17. begin
  18. N : = N + 2 ;
  19. EncodedString[ N - 2 ] : = MatchCount + 128 ;
  20. EncodedString[ N - 1 ] : = ord (InMsg[ 1 ] ) ;
  21. else
  22. begin
  23. if MatchCount <> length(InMsg) then
  24. MatchCount : = MatchCount - 1 ;
  25. N : = N + 1 + MatchCount;
  26. EncodedString[ N - 1 - MatchCount] : = - MatchCount + 128 ;
  27. for i : = 1 to MatchCount do
  28. EncodedString[ N - 1 - MatchCount + i] : = ord (InMsg[ i] ) ;
  29. end ;
  30. delete(InMsg, 1 , MatchCount) ;
  31. end ;
  32. SetLength(EncodedString, N) ;
  33. RLEEncode : = EncodedString;
  34. end ;

Декодирование сжатого сообщения выполняется очень просто и сводится к однократному проходу по сжатому сообщению см. Листинг 2:
  1. type
  2. TRLEEncodedString = array of byte ;
  3. function RLEDecode(InMsg: TRLEEncodedString) : ShortString;
  4. RepeatCount: shortint ;
  5. i, j: word ;
  6. OutMsg: ShortString;
  7. begin
  8. OutMsg : = "" ;
  9. i : = 0 ;
  10. while i < length(InMsg) do
  11. begin
  12. RepeatCount : = InMsg[ i] - 128 ;
  13. i : = i + 1 ;
  14. if RepeatCount < 0 then
  15. begin
  16. RepeatCount : = abs (RepeatCount) ;
  17. for j : = i to i + RepeatCount - 1 do
  18. OutMsg : = OutMsg + chr (InMsg[ j] ) ;
  19. i : = i + RepeatCount;
  20. else
  21. begin
  22. for j : = 1 to RepeatCount do
  23. OutMsg : = OutMsg + chr (InMsg[ i] ) ;
  24. i : = i + 1 ;
  25. end ;
  26. end ;
  27. RLEDecode : = OutMsg;
  28. end ;

Вторым методом повышения эффективности алгоритма RLE является использование алгоритмов преобразования информации, которые непосредственно не сжимают данные, но приводят их к виду, более удобному для сжатия. В качестве примера такого алгоритма мы рассмотрим BWT-перестановку, названную по фамилиям изобретателей Burrows-Wheeler transform. Эта перестановка не изменяет сами символы, а изменяет только их порядок в строке, при этом повторяющиеся подстроки после применения перестановки собираются в плотные группы, которые гораздо лучше сжимаются с помощью алгоритма RLE. Прямое BWT преобразование сводится к последовательности следующих шагов:
1. Добавление к исходной строке специального символа конца строки, который нигде более не встречается;
2. Получение всех циклических перестановок исходной строки;
3. Сортировка полученных строк в лексикографическом порядке;
4. Возвращение последнего столбца полученной матрицы.
Реализация данного алгоритма приведена в Листинг 3.
  1. const
  2. EOMsg = "|" ;
  3. function BWTEncode(InMsg: ShortString) : ShortString;
  4. OutMsg: ShortString;
  5. LastChar: ANSIChar;
  6. N, i: word ;
  7. begin
  8. InMsg : = InMsg + EOMsg;
  9. N : = length(InMsg) ;
  10. ShiftTable[ 1 ] : = InMsg;
  11. for i : = 2 to N do
  12. begin
  13. LastChar : = InMsg[ N] ;
  14. InMsg : = LastChar + copy(InMsg, 1 , N - 1 ) ;
  15. ShiftTable[ i] : = InMsg;
  16. end ;
  17. Sort(ShiftTable) ;
  18. OutMsg : = "" ;
  19. for i : = 1 to N do
  20. OutMsg : = OutMsg + ShiftTable[ i] [ N] ;
  21. BWTEncode : = OutMsg;
  22. end ;

Проще всего пояснить это преобразование на конкретном примере. Возьмём строку «АНАНАС» и договоримся, что символом конца строки будет символ «|». Все циклические перестановки этой строки и результат их лексикографической сортировки приведены в Табл. 1.

Т.е. результатом прямого преобразования будет строка «|ННАААС». Легко заметить, что это строка гораздо лучше, чем исходная, сжимается алгоритмом RLE, т.к. в ней существуют длинные подпоследовательности повторяющихся букв.
Подобного эффекта можно добиться и с помощью других преобразований, но преимущество BWT-преобразования в том, что оно обратимо, правда, обратное преобразование сложнее прямого. Для того, чтобы восстановить исходную строку, необходимо выполнить следующие действия:
Создать пустую матрицу размером n*n, где n-количество символов в закодированном сообщении;
Заполнить самый правый пустой столбец закодированным сообщением;
Отсортировать строки таблицы в лексикографическом порядке;
Повторять шаги 2-3, пока есть пустые столбцы;
Вернуть ту строку, которая заканчивается символом конца строки.

Реализация обратного преобразования на первый взгляд не представляет сложности, и один из вариантов реализации приведён в Листинг 4.

  1. const
  2. EOMsg = "|" ;
  3. function BWTDecode(InMsg: ShortString) : ShortString;
  4. OutMsg: ShortString;
  5. ShiftTable: array of ShortString;
  6. N, i, j: word ;
  7. begin
  8. OutMsg : = "" ;
  9. N : = length(InMsg) ;
  10. SetLength(ShiftTable, N + 1 ) ;
  11. for i : = 0 to N do
  12. ShiftTable[ i] : = "" ;
  13. for i : = 1 to N do
  14. begin
  15. for j : = 1 to N do
  16. ShiftTable[ j] : = InMsg[ j] + ShiftTable[ j] ;
  17. Sort(ShiftTable) ;
  18. end ;
  19. for i : = 1 to N do
  20. if ShiftTable[ i] [ N] = EOMsg then
  21. OutMsg : = ShiftTable[ i] ;
  22. delete(OutMsg, N, 1 ) ;
  23. BWTDecode : = OutMsg;
  24. end ;

Но на практике эффективность зависит от выбранного алгоритма сортировки. Тривиальные алгоритмы с квадратичной сложностью, очевидно, крайне негативно скажутся на быстродействии, поэтому рекомендуется использовать эффективные алгоритмы.

После сортировки таблицы, полученной на седьмом шаге, необходимо выбрать из таблицы строку, заканчивающуюся символом «|». Легко заметить, что это строка единственная. Т.о. мы на конкретном примере рассмотрели преобразование BWT.

Подводя итог, можно сказать, что основным плюсом группы алгоритмов RLE является простота и скорость работы (в том числе и скорость декодирования), а главным минусом является неэффективность на неповторяющихся наборах символов. Использование специальных перестановок повышает эффективность алгоритма, но также сильно увеличивает время работы (особенно декодирования).

Словарное сжатие (алгоритмы LZ)

Группа словарных алгоритмов, в отличие от алгоритмов группы RLE, кодирует не количество повторов символов, а встречавшиеся ранее последовательности символов. Во время работы рассматриваемых алгоритмов динамически создаётся таблица со списком уже встречавшихся последовательностей и соответствующих им кодов. Эту таблицу часто называют словарём, а соответствующую группу алгоритмов называют словарными.

Ниже описан простейший вариант словарного алгоритма:
Инициализировать словарь всеми символами, встречающимися во входной строке;
Найти в словаре самую длинную последовательность (S), совпадающую с началом кодируемого сообщения;
Выдать код найденной последовательности и удалить её из начала кодируемого сообщения;
Если не достигнут конец сообщения, считать очередной символ и добавить Sc в словарь, перейти к шагу 2. Иначе, выход.

Например, только что инициализированный словарь для фразы «КУКУШКАКУКУШОНКУКУПИЛАКАПЮШОН» приведён в Табл. 3:

В процессе сжатия словарь будет дополняться встречающимися в сообщении последовательностями. Процесс пополнения словаря приведён в Табл. 4.

При описании алгоритма намеренно было опущено описание ситуации, когда словарь заполняется полностью. В зависимости от варианта алгоритма возможно различное поведение: полная или частичная очистка словаря, прекращение заполнение словаря или расширение словаря с соответствующим увеличением разрядности кода. Каждый из этих подходов имеет определённые недостатки. Например, прекращение пополнения словаря может привести к ситуации, когда в словаре хранятся последовательности, встречающиеся в начале сжимаемой строки, но не встречающиеся в дальнейшем. В то же время очистка словаря может привести к удалению частых последовательностей. Большинство используемых реализаций при заполнении словаря начинают отслеживать степень сжатия, и при её снижении ниже определённого уровня происходит перестройка словаря. Далее будет рассмотрена простейшая реализация, прекращающая пополнение словаря при его заполнении.

Для начала определим словарь как запись, хранящую не только встречавшиеся подстроки, но и количество хранящихся в словаре подстрок:

Встречавшиеся ранее подпоследовательности хранятся в массиве Words, а их кодом являются номера подпоследовательностей в этом массиве.
Также определим функции поиска в словаре и добавления в словарь:

  1. const
  2. MAX_DICT_LENGTH = 256 ;
  3. function FindInDict(D: TDictionary; str: ShortString) : integer ;
  4. r: integer ;
  5. i: integer ;
  6. fl: boolean ;
  7. begin
  8. r : = - 1 ;
  9. if D. WordCount > 0 then
  10. begin
  11. i : = D. WordCount ;
  12. fl : = false ;
  13. while (not fl) and (i >= 0 ) do
  14. begin
  15. i : = i - 1 ;
  16. fl : = D. Words [ i] = str;
  17. end ;
  18. end ;
  19. if fl then
  20. r : = i;
  21. FindInDict : = r;
  22. end ;
  23. procedure AddToDict(var D: TDictionary; str: ShortString) ;
  24. begin
  25. if D. WordCount < MAX_DICT_LENGTH then
  26. begin
  27. D. WordCount : = D. WordCount + 1 ;
  28. SetLength(D. Words , D. WordCount ) ;
  29. D. Words [ D. WordCount - 1 ] : = str;
  30. end ;
  31. end ;

Используя эти функции, процесс кодирования по описанному алгоритму можно реализовать следующим образом:
  1. function LZWEncode(InMsg: ShortString) : TEncodedString;
  2. OutMsg: TEncodedString;
  3. tmpstr: ShortString;
  4. D: TDictionary;
  5. i, N: byte ;
  6. begin
  7. SetLength(OutMsg, length(InMsg) ) ;
  8. N : = 0 ;
  9. InitDict(D) ;
  10. while length(InMsg) > 0 do
  11. begin
  12. tmpstr : = InMsg[ 1 ] ;
  13. while (FindInDict(D, tmpstr) >= 0 ) and (length(InMsg) > length(tmpstr) ) do
  14. tmpstr : = tmpstr + InMsg[ length(tmpstr) + 1 ] ;
  15. if FindInDict(D, tmpstr) < 0 then
  16. delete(tmpstr, length(tmpstr) , 1 ) ;
  17. OutMsg[ N] : = FindInDict(D, tmpstr) ;
  18. N : = N + 1 ;
  19. delete(InMsg, 1 , length(tmpstr) ) ;
  20. if length(InMsg) > 0 then
  21. AddToDict(D, tmpstr + InMsg[ 1 ] ) ;
  22. end ;
  23. SetLength(OutMsg, N) ;
  24. LZWEncode : = OutMsg;
  25. end ;

Результатом кодирования будут номера слов в словаре.
Процесс декодирования сводится к прямой расшифровке кодов, при этом нет необходимости передавать созданный словарь, достаточно, чтобы при декодировании словарь был инициализирован так же, как и при кодировании. Тогда словарь будет полностью восстановлен непосредственно в процессе декодирования путём конкатенации предыдущей подпоследовательности и текущего символа.

Единственная проблема возможна в следующей ситуации: когда необходимо декодировать подпоследовательность, которой ещё нет в словаре. Легко убедиться, что это возможно только в случае, когда необходимо извлечь подстроку, которая должна быть добавлена на текущем шаге. А это значит, что подстрока удовлетворяет шаблону cSc, т.е. начинается и заканчивается одним и тем же символом. При этом cS – это подстрока, добавленная на предыдущем шаге. Рассмотренная ситуация – единственная, когда необходимо декодировать ещё не добавленную строку. Учитывая вышесказанное, можно предложить следующий вариант декодирования сжатой строки:

  1. function LZWDecode(InMsg: TEncodedString) : ShortString;
  2. D: TDictionary;
  3. OutMsg, tmpstr: ShortString;
  4. i: byte ;
  5. begin
  6. OutMsg : = "" ;
  7. tmpstr : = "" ;
  8. InitDict(D) ;
  9. for i : = 0 to length(InMsg) - 1 do
  10. begin
  11. if InMsg[ i] >= D. WordCount then
  12. tmpstr : = D. Words [ InMsg[ i - 1 ] ] + D. Words [ InMsg[ i - 1 ] ] [ 1 ]
  13. else
  14. tmpstr : = D. Words [ InMsg[ i] ] ;
  15. OutMsg : = OutMsg + tmpstr;
  16. if i > 0 then
  17. AddToDict(D, D. Words [ InMsg[ i - 1 ] ] + tmpstr[ 1 ] ) ;
  18. end ;
  19. LZWDecode : = OutMsg;
  20. end ;

К плюсам словарных алгоритмов относится их большая по сравнению с RLE эффективность сжатия. Тем не менее надо понимать, что реальное использование этих алгоритмов сопряжено с некоторыми трудностями реализации.

Энтропийное кодирование

Кодирование с помощью деревьев Шеннона-Фано

Алгоритм Шеннона-Фано - один из первых разработанных алгоритмов сжатия. В основе алгоритма лежит идея представления более частых символов с помощью более коротких кодов. При этом коды, полученные с помощью алгоритма Шеннона-Фано, обладают свойством префиксности: т.е. ни один код не является началом никакого другого кода. Свойство префиксности гарантирует, что кодирование будет взаимно-однозначным. Алгоритм построения кодов Шеннона-Фано представлен ниже:
1. Разбить алфавит на две части, суммарные вероятности символов в которых максимально близки друг к другу.
2. В префиксный код первой части символов добавить 0, в префиксный код второй части символов добавить 1.
3. Для каждой части (в которой не менее двух символов) рекурсивно выполнить шаги 1-3.
Несмотря на сравнительную простоту, алгоритм Шеннона-Фано не лишён недостатков, самым существенным из которых является неоптимальность кодирования. Хоть разбиение на каждом шаге и является оптимальным, алгоритм не гарантирует оптимального результата в целом. Рассмотрим, например, следующую строку: «ААААБВГДЕЖ». Соответствующее дерево Шеннона-Фано и коды, полученные на его основе, представлены на Рис. 1:

Без использования кодирования сообщение будет занимать 40 бит (при условии, что каждый символ кодируется 4 битами), а с использованием алгоритма Шеннона-Фано 4*2+2+4+4+3+3+3=27 бит. Объём сообщения уменьшился на 32.5%, но ниже будет показано, что этот результат можно значительно улучшить.

Кодирование с помощью деревьев Хаффмана

Алгоритм кодирования Хаффмана, разработанный через несколько лет после алгоритма Шеннона-Фано, тоже обладает свойством префиксности, а, кроме того, доказанной минимальной избыточностью, именно этим обусловлено его крайне широкое распространение. Для получения кодов Хаффмана используют следующий алгоритм:
1. Все символы алфавита представляются в виде свободных узлов, при этом вес узла пропорционален частоте символа в сообщении;
2. Из множества свободных узлов выбираются два узла с минимальным весом и создаётся новый (родительский) узел с весом, равным сумме весов выбранных узлов;
3. Выбранные узлы удаляются из списка свободных, а созданный на их основе родительский узел добавляется в этот список;
4. Шаги 2-3 повторяются до тех пор, пока в списке свободных больше одного узла;
5. На основе построенного дерева каждому символу алфавита присваивается префиксный код;
6. Сообщение кодируется полученными кодами.

Рассмотрим тот же пример, что и в случае с алгоритмом Шеннона-Фано. Дерево Хаффмана и коды, полученные для сообщения «ААААБВГДЕЖ», представлены на Рис. 2:

Легко подсчитать, что объём закодированного сообщения составит 26 бит, что меньше, чем в алгоритме Шеннона-Фано. Отдельно стоит отметить, что ввиду популярности алгоритма Хаффмана на данный момент существует множество вариантов кодирования Хаффмана, в том числе и адаптивное кодирование, которое не требует передачи частот символов.
Среди недостатков алгоритма Хаффмана значительную часть составляют проблемы, связанные со сложностью реализации. Использование для хранения частот символов вещественных переменных сопряжено с потерей точности, поэтому на практике часто используют целочисленные переменные, но, т.к. вес родительских узлов постоянно растёт, рано или поздно возникает переполнение. Т.о., несмотря на простоту алгоритма, его корректная реализация до сих пор может вызывать некоторые затруднения, особенно для больших алфавитов.

Кодирование с помощью деревьев секущих функций

Кодирование с помощью секущих функций – разработанный авторами алгоритм, позволяющий получать префиксные коды. В основе алгоритма лежит идея построения дерева, каждый узел которого содержит секущую функцию. Чтобы подробнее описать алгоритм, необходимо ввести несколько определений.
Слово – упорядоченная последовательность из m бит (число m называют разрядностью слова).
Литерал секущей – пара вида разряд-значение разряда. Например, литерал (4,1) означает, что 4 бит слова должен быть равен 1. Если условие литерала выполняется, то литерал считается истинным, в противном случае - ложным.
k-разрядной секущей называют множество из k литералов. Если все литералы истинны, то и сама секущая функция истинная, в противном случае она ложная.

Дерево строится так, чтобы каждый узел делил алфавит на максимально близкие части. На Рис. 3 показан пример дерева секущих:

Дерево секущих функций в общем случае не гарантирует оптимального кодирования, но зато обеспечивает крайне высокую скорость работы за счёт простоты операции в узлах.

Арифметическое кодирование

Арифметическое кодирование – один из наиболее эффективных способов сжатия информации. В отличие от алгоритма Хаффмана арифметическое кодирование позволяет кодировать сообщения с энтропией меньше 1 бита на символ. Т.к. большинство алгоритмов арифметического кодирования защищены патентами, далее будут описаны только основные идеи.
Предположим, что в используемом алфавите N символов a_1,…,a_N, с частотами p_1,…,p_N, соответственно. Тогда алгоритм арифметического кодирования будет выглядеть следующим образом:
В качестве рабочего полуинтервала взять }