Чем и как измеряют индуктивность катушек мд. Простой измеритель индуктивности - приставка к цифровому мультиметру. Измерение индуктивности с помощью сопротивления

Основным параметром, характеризующим контурные катушки, дроссели, обмотки трансформаторов является индуктивность L. В высокочастотных цепях применяются катушки с индуктивностью от сотых долей микрогенри до десятков миллигенри; катушки, используемые в низкочастотных цепях, имеют индуктивность до сотен и тысяч генри. Измерение индуктивности высокочастотных катушек, входящих в состав колебательных систем, желательно производить с погрешностью не более 5%; в большинстве других случаев допустима погрешность измерения до 10-20%.

Рис. 1. Эквивалентные схемы катушки индуктивности.

Каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью C L и активным сопротивлением потерь R L , распределёнными по её длине. Условно считают, что L, C L и R L сосредоточены и образуют замкнутую колебательную цепь (рис. 1, а) с собственной резонансной частотой

f L = 1/(LC L) 0,5

Вследствие влияния ёмкости C L при измерении на высокой частоте f определяется не истинная индуктивность L, а действующее, или динамическое, значение индуктивности

L д = L/(1-(2*π*f) 2 *LC L) = L/(1-f 2 / f L 2)

которое может заметно отличаться от индуктивности L, измеренной на низких частотах.

С повышением частоты возрастают потери в катушках индуктивности, обусловленные поверхностным эффектом, излучением энергии, токами смещения в изоляции обмотки и каркасе, вихревыми токами в сердечнике. Поэтому действующее активное сопротивление R д катушки может заметно превышать её сопротивление R L , измеренное омметром или мостом постоянного тока. От частоты f зависит и добротность катушки:

Q L = 2*π*f*L д /R д.

На рис. 1, б, представлена эквивалентная схема катушки индуктивности с учётом её действующих параметров. Так как значения всех параметров зависят от частоты, то испытание катушек, особенно высокочастотных, желательно проводить при частоте колебаний источника питания, соответствующей их рабочему режиму. При определении результатов испытания индекс «д» обычно опускают.

Для измерения параметров катушек индуктивности применяются в основном методы вольтметра - амперметра, мостовой и резонансный. Перед измерениями катушка индуктивности должна быть проверена на отсутствие в ней обрыва и короткозамкнутых витков. Обрыв легко обнаруживается с помощью любого омметра или пробника, тогда как выявление коротких замыканий требует проведения специального испытания.

Для простейших испытаний катушек индуктивности иногда используют электронно-лучевые осциллографы.

Индикация короткозамкнутых витков

Проверка на отсутствие короткого замыкания чаще всего производится помещением испытуемой катушки вблизи другой катушки, входящей в состав колебательного контура автогенератора, наличие колебаний в котором и их уровень контролируются с помощью телефонов, стрелочного, электронно-светового или иного индикатора. Катушка с короткозамкнутыми витками будет вносить в связанную с нею цепь активные потери и реактивное сопротивление, уменьшающие добротность и действующую индуктивность цепи; в результате произойдёт ослабление колебаний автогенератора или даже их срыв.

Рис. 2. Схема резонансного измерителя ёмкостей, использующего явление поглощения.

Чувствительным прибором подобного типа может служить, например, генератор, выполненный по схеме на рис. 2. Катушка с короткозамкнутыми витками, поднесённая к контурной катушке L1, будет вызывать заметное возрастание показаний микроамперметра μA.

Испытательная цепь может представлять собой настроенный на частоту источника питания последовательный контур (см. «Радио», 72-5-54); напряжение на элементах этого контура, контролируемое каким-либо индикатором, под влиянием короткозамкнутых витков проверяемой катушки будет уменьшаться вследствие расстройки и возрастания потерь. Возможно также использование уравновешенного моста переменного тока, одним из плеч которого в этом случае должна являться катушка связи (вместо катушки L x); короткозамкнутые витки испытуемых катушек будут вызывать нарушение равновесия моста.

Чувствительность испытательного прибора зависит от степени связи между катушкой измерительной цепи и проверяемой катушкой, с целью её повышения желательно обе катушки насаживать на общий сердечник, который в этом случае выполняется разомкнутым.

При отсутствии специальных приборов для проверки высокочастотных катушек можно использовать радиоприёмник. Последний настраивают на какую-либо хорошо слышимую станцию, после чего вблизи одной из его действующих контурных катушек, например магнитной антенны (желательно на одной оси с нею), помещают проверяемую катушку. При наличии короткозамкнутых витков громкость заметно уменьшится. Уменьшение громкости может иметь место и в том случае, если частота настройки приёмника окажется близкой к собственной частоте испытуемой катушки. Поэтому во избежание ошибки испытание следует повторить при настройке приёмника на другую станцию, достаточно удалённую от первой по частоте.

Измерение индуктивностей методом вольтметра - амперметра

Метод вольтметра - амперметра применяется для измерения сравнительно больших индуктивностей при питании измерительной схемы от источника низкой частоты F = 50...1000 Гц.

Схема измерений представлена на рис. 3, а . Полное сопротивление Z катушки индуктивности рассчитывается по формуле

Z = (R2+X2) 0,5 = U/I

на основе показаний приборов переменного тока V ~ и mA ~ . Верхний (по схеме) вывод вольтметра присоединяют к точке а при Z << Z в и к точке б при Z >> Z a , где Z в и Z a - полные входные сопротивления соответственно вольтметра V ~ и миллиамперметра mA ~ . Если потери малы, т. е. R << X = 2*π*F*L x , то измеряемая индуктивность определяется формулой

L x ≈ U/(2*π*F*I).

Катушки большой индуктивности с целью уменьшения их габаритов обычно изготовляются со стальными сердечниками. Наличие последних приводит к нелинейной зависимости магнитного потока от тока, протекающего через катушку. Эта зависимость становится особенно сложной для катушек, работающих с подмагничиванием, через обмотки которых протекают одновременно переменный и постоянный токи. Поэтому индуктивность катушек со стальными сердечниками зависит от значения и характера протекающего через них тока. Например, при большой постоянной составляющей тока происходит магнитное насыщение сердечника и индуктивность катушки резко уменьшается. Кроме того, проницаемость сердечника и индуктивность катушки зависят от частоты переменного тока. Отсюда следует, что измерение индуктивности катушек со стальными сердечниками необходимо проводить в условиях, близких к их рабочему режиму. В схеме на рис. 3, а это обеспечивается при дополнении её цепью постоянного тока, показанной штриховой линией. Необходимый ток подмагничивания устанавливается реостатом R2 по показаниям миллиамперметра постоянного тока mA . Разделительный конденсатор С и дроссель Др разделяют цепи питания постоянного и переменного тока, устраняя взаимное влияние между ними. Приборы переменного тока, применяемые в данной схеме, не должны реагировать на постоянные составляющие измеряемого ими тока или напряжения; для вольтметра V ~ это легко обеспечивается посредством включения последовательно с ним конденсатора ёмкостью в несколько микрофарад.

Рис. 3. Схемы измерения индуктивности методом вольтметра - амперметра.

Другой вариант измерительной схемы, позволяющий обойтись без миллиамперметра переменного тока, приведён на рис. 3, б . В этой схеме реостатами R1 и R2 (их можно заменить потенциометрами, включёнными параллельно источникам питания) устанавливают требуемый режим испытания по переменному и постоянному току. В положении 1 переключателя В вольтметр V ~ измеряет переменное напряжение U 1 на катушке L x . При переводе переключателя в положение 2 фактически контролируется значение переменного тока в цепи по падению напряжения U 2 на опорном резисторе R о. Если потери в катушке малы, т. е. R << 2*π*F*L x , то измеряемую индуктивность можно рассчитать по формуле

L x ≈ U1*R о /(2*π*F*U 2).

Мостовой метод измерения параметров катушек индуктивности. Универсальные измерительные мосты

Мосты, предназначенные для измерения параметров катушек индуктивности, формируются из двух плеч активного сопротивления, плеча с объектом измерений, сопротивление которого в общем случае является комплексным, и плеча с реактивным элементом - конденсатором или катушкой индуктивности.

Рис. 4. Схема магазинного моста для измерения индуктивностей и сопротивлений потерь.

В измерительных мостах магазинного типа в качестве реактивных элементов предпочитают использовать конденсаторы, поскольку в последних потери энергии могут быть сделаны пренебрежимо малыми, а это способствует более точному определению параметров исследуемых катушек. Схема такого моста представлена на рис. 4. Регулируемым элементом здесь является конденсатор С2 переменной ёмкости (или магазин ёмкостей), зашунтированный переменным резистором R2; последний служит для уравновешивания фазового сдвига, создаваемого сопротивлением потерь R x в катушке с индуктивностью L x . Применяя условие равновесия амплитуд (Z 4 Z 2 = Z 1 Z 3), находим:

(R x 2 + (2*&pi*F*L x) 2) 0,5: ((1/R 2) 2 + (2*&pi*F*C 2) 2) 0,5 = R 1 R 3 .

Так как фазовые углы φ1 = φ3 = 0, то условие равновесия фаз (φ4 +φ2 =φ1 + φ3) можно записать в виде равенства φ4 + φ2 = 0, или φ4 = -φ2, или tg φ4 = -tg φ2. Учитывая, что для плеча с L x справедлива формула (tg φ =X/R), а для плеча с ёмкостью С 2 - формула (tg φ =R/X) при отрицательном значении угла φ2, имеем

2*&pi*F*L x / R x = 2*&pi*F*C 2 R 2

Решая совместно приведённые выше уравнения, получим:

L x = C 2 R 1 R 3 ; (1)
R x = R 1 R 3 / R 2 . (2)

Из последних формул следует, что конденсатор С2 и резистор R2 могут иметь шкалы для непосредственной оценки значений L x и R x , причём регулировки амплитуд и фаз, производимые ими, взаимонезависимы, что позволяет быстро уравновешивать мост.

Для расширения диапазона измеряемых величин один из резисторов R1 или R3 обычно выполняется в виде магазина сопротивлений.

При необходимости измерения параметров катушек со стальными сердечниками схема моста на рис. 4 дополняется источником постоянного напряжения U о, реостатом R о и миллиамперметром постоянного тока mA , служащими для регулировки и контроля тока подмагничивания, а также дросселем Др и конденсатором С, разделяющими цепи переменной и постоянной составляющих тока.

Рис. 5. Схема магазинного моста для измерения индуктивностей и добротностей

На рис. 5 приведена схема другого варианта магазинного моста, в которой конденсатор С2 имеет постоянную ёмкость, а резисторы R1 и R2 взяты переменными. Расширение диапазона измерений осуществляется посредством включения в мост резисторов R3 различных номиналов. Из формул (1) и (2) следует, что регулировки амплитуд и фаз в этой схеме оказываются взаимозависимыми, поэтому уравновешивание моста достигается путём попеременного изменения сопротивлений резисторов R1 и R2. Оценка индуктивностей L x производится по шкале резистора R1 с учётом множителя, определяемого установкой переключателя В . Отсчёт по шкале резистора R2 обычно производится в значениях добротности катушек

Q L = 2*π*F*L x /R x = 2*π*F*C 2 R 2 .

при частоте F источника питания. В справедливости последней формулы можно убедиться, если левую и правую части равенства (1) разделить на соответствующие части равенства (2).

При указанных на схеме данных измерительный мост позволяет измерять индуктивности примерно от 20 мкГн до 1, 10, 100 мГн; 1 и 10 Гн (без стальных сердечников) и добротности до значения Q L ≈ 60. Источником питания служит транзисторный генератор с частотой колебаний F ≈ 1 кГц. Напряжение разбаланса усиливается транзисторным усилителем, нагруженным на телефоны Тф. Двойной Т-образный RC-фильтр, настроенный на частоту 2F ≈ 2 кГц, подавляет вторую гармонику колебаний источника, что облегчает уравновешивание моста и снижает погрешность измерений.

Мостовые измерители индуктивностей, ёмкостей и активных сопротивлений имеют ряд идентичных элементов. Поэтому они часто совмещаются в одном приборе - универсальном измерительном мосте. Универсальные мосты высокой точности базируются на магазинных схемах типа приведённых на рис. 5. Они содержат источник постоянного напряжения или выпрямитель (питающий схему измерения R x), генератор низкой частоты с выходной мощностью в несколько ватт, многокаскадный усилитель напряжения разбаланса, нагруженный на магнитоэлектрический гальванометр; последний при измерении активных сопротивлений включается непосредственно в измерительную диагональ моста. Требуемая схема измерений формируется с помощью довольно сложной системы коммутации. В таких мостах иногда применяют индикаторы логарифмического типа, чувствительность которых резко падает, если мост не уравновешен.

Рис. 6. Схема универсального реохордного моста для измерения сопротивлений, ёмкостей и индуктивностей

Значительно проще универсальные мосты реохордного типа, измеряющие параметры радиодеталей с погрешностью порядка 5-15%. Возможная схема такого моста представлена на рис. 6. Мост питается при всех видах измерений напряжением с частотой примерно 1 кГц, которое возбуждается транзисторным генератором, выполненным по схеме индуктивной трёхточки. Индикатором баланса служит высокоомный телефон Тф. Резисторы R2 и R3 заменены проволочным реохордом (или, чаще, обычным потенциометром), позволяющим уравновешивать мост плавным изменением отношения сопротивлений R2/R3. Это отношение отсчитывается по шкале реохорда, диапазон показаний которой обычно ограничивается крайними значениями 0,1 и 10. Измеряемая величина определяется при уравновешенном мосте как произведение отсчёта по шкале реохорда на множитель, определяемый установкой переключателя В. Каждому виду и пределу измерений отвечает включение в схему моста соответствующего опорного элемента требуемого номинала - конденсатора С о (С1), резистора R о (R4) или катушки индуктивности L о (L4).

Особенностью рассматриваемой схемы является то, что измеряемые элементы R x и L x включаются в первое плечо моста (при опорных элементах R о и L о, находящихся в четвёртом плече), а С х, наоборот, - в четвёртое плечо (при С о - в первом плече). Благодаря этому оценка всех измеряемых величин производится по аналогичным формулам типа

A X = A о (R2/R3),

где А х и А о - значения величин соответствующих измеряемого и опорного элементов.

Переменный резистор R5 служит для компенсации фазовых сдвигов и улучшения балансировки моста при измерении индуктивностей. С той же целью иногда включают переменный резистор небольшого сопротивления в цепь опорного конденсатора С о предела измерений больших ёмкостей, которые часто имеют заметные потери.

С целью исключения влияния руки оператора движок реохорда обычно соединяют с корпусом прибора.

Резонансные измерители индуктивностей

Резонансные методы позволяют измерять параметры высокочастотных катушек индуктивности в диапазоне их рабочих частот. Схемы и способы измерений аналогичны применяемым при резонансных измерениях ёмкостей конденсаторов с учётом, конечно, специфики объектов измерений.

Рис. 7. Резонансная схема измерения индуктивностей с отсчётом по шкале генератора

Исследуемая катушка индуктивности может включаться в высокочастотный генератор как элемент его колебательного контура; В этом случае индуктивность L x определяется на основе показаний частотомера, измеряющего частоту колебаний генератора.

Чаще катушку L x подключают к измерительному контуру, связанному с источником высокочастотных колебаний, например генератором (рис. 2) или входной цепью радиоприёмника, настроенного на частоту радиовещательной станции (рис. 8). Предположим, что измерительный контур состоит из катушки связи L с подстроечным сердечником и конденсатора переменной ёмкости С о.

Рис. 8. Схема измерения ёмкостей резонансным методом с помощью радиоприёмника

Тогда применима следующая методика измерений. Измерительный контур при максимальной ёмкости С о1 конденсатора С о регулировкой индуктивности L настраивают в резонанс с известной частотой f источника колебаний. Затем в контур последовательно с его элементами включают катушку L x , после чего резонанс восстанавливают уменьшением ёмкости Со до некоторого значения С о2 . Измеряемую индуктивность рассчитывают по формуле

L х = * (С о1 -С о2)/(С о1 С о2).

В широкодиапазонных резонансных измерителях измерительный контур составляется из опорного конденсатора С о и исследуемой катушки L x . Контур связывают индуктивно, а чаще через конденсатор С 1 небольшой ёмкости (рис. 7 и 9) с высокочастотным генератором. Если известна частота колебаний генератора f 0 , соответствующая резонансной настройке контура, то измеряемая индуктивность определяется формулой

L х = 1/[(2*π*f о) 2 *C о ]. (3)

Возможны два варианта построения измерительных схем. В схемах первого варианта (рис. 7) конденсатор С о берётся постоянной ёмкости, а резонанс достигается изменением настройки генератора, работающего в плавном диапазоне частот. Каждому значению L x отвечает определённая резонансная частота

f 0 = 1/(2*π*(L x C x) 0,5), (4)

поэтому контурный конденсатор генератора можно снабдить шкалой с отсчётом в значениях L x . При широком диапазоне измеряемых индуктивностей генератор должен иметь несколько частотных поддиапазонов с отдельными шкалами для оценки L x на каждом поддиапазоне. Если в приборе используется генератор, имеющий шкалу частот, то для определения L x по значениям f 0 и С о можно составить таблицы или графики.

Для исключения влияния собственной ёмкости C L катушки на результаты измерений ёмкость С о должна быть большой; с другой стороны, ёмкость С о желательно иметь малой, чтобы обеспечить при измерении малых индуктивностей достаточно большое отношение L x /C о, необходимое для получения заметных показаний индикатора при резонансе. Практически берут С о = 500...1000 пФ.

Если высокочастотный генератор работает в ограниченном диапазоне частот, не разбитом на поддиапазоны, то для расширения пределов измерения индуктивностей применяют несколько переключаемых конденсаторов С о; если их ёмкости различаются в 10 раз, то на всех пределах оценка L x может производиться по одной и той же шкале генератора с использованием множителей к ней, кратных 10. Однако такая схема имеет существенные недостатки.

Измерение относительно больших индуктивностей, имеющих значительную собственную ёмкость C L , происходит на пределе с малой ёмкостью С о, и, наоборот, измерение малых индуктивностей производится на пределе с большой ёмкостью С о при невыгодном отношении L x /C о и малом резонансном напряжении на контуре.

Рис. 9. Резонансная схема измерения индуктивностей с отсчётом по шкале опорного конденсатора

В резонансных измерителях, схемы которых выполнены по второму варианту (рис. 9), индуктивности измеряются при фиксированной частоте генератора f 0 . Измерительный контур настраивают в резонанс с частотой генератора с помощью конденсатора переменной ёмкости С о, отсчёт по шкале которого в соответствии с формулой (3) может производиться непосредственно в значениях L x . Если обозначить через С м и С н соответственно максимальную и начальную ёмкости контура, а через L м и L н - максимальное и наименьшее значения измеряемых индуктивностей, то пределы измерения прибора будут ограничиваться отношением

L м /L н = С м /С н.

Типовые конденсаторы переменной ёмкости имеют перекрытие по ёмкости, равное примерно 30. С целью уменьшения погрешности при измерении больших индуктивностей начальную ёмкость С н контура увеличивают посредством включения в контур дополнительного конденсатора С д, обычно подстроечного типа.

Если обозначить через ΔС о наибольшее изменение ёмкости конденсатора С о, равное разности его ёмкостей при двух крайних положениях ротора, то для получения выбранного отношения L м /L н контур должен иметь начальную ёмкость

C н = ΔC о: (L м /L н -1). (5)

Например, при ΔС о = 480 пФ и отношении L м /L н = 11 получаем С н = 48 пФ. Если значения С н и L м /L н при расчёте являются исходными данными, то необходимо применить конденсатор С о, имеющий разность ёмкостей

ΔC о ≥ C н (L м /L н -1).

При больших значениях С н и L м /L н может потребоваться применение сдвоенного или строенного блока конденсаторов переменной ёмкости.

Частота f 0 , на которой должен работать генератор, определяется формулой (4) при подстановке в неё значений L м и С н или L н и С м. Для расширения общего диапазона измерений предусматривают работу генератора на нескольких переключаемых фиксированных частотах. Если соседние частоты генератора различаются в 10 0,5 ≈ 3,16 раза, то на всех пределах можно использовать общую шкалу индуктивностей конденсатора С о с множителями к ней, кратными 10 и определяемыми установкой переключателя частот (рис. 9). Плавное перекрытие всего диапазона измеряемых индуктивностей обеспечивается при отношении ёмкостей контура C м /C н ≥ 10. Если конденсатор С о логарифмического типа, то шкала индуктивностей близка к линейной.

Вместо генератора фиксированных частот можно применить измерительный генератор с плавным изменением частоты, которую устанавливают в зависимости от требуемого предела измерения индуктивностей.

Резонансные схемы измерения индуктивностей и ёмкостей часто совмещаются в одном приборе, поскольку они имеют ряд идентичных элементов и сходную методику измерений.

Пример . Рассчитать резонансный измеритель индуктивностей, работающий по схеме на рис. 9, на диапазон измерений 0,1 мкГн - 10 мГн при использовании сдвоенного блока переменных конденсаторов, ёмкость секций которого можно изменять от 15 до 415 пФ.

Решение
1. Наибольшее изменение ёмкости контура ΔС о = 2*(415-15) = 800 пФ.

2. Выбираем отношение L м /L н = 11. Тогда прибор будет иметь пять пределов измерений: 0,1-1,1; 1-11; 10-110; 100-1100мкГ и 1-11 мГн.

3. Согласно (5) контур должен иметь начальную ёмкость С н = 800/10 = 80 пФ. Учитывая начальную ёмкость блока конденсаторов, равную 30 пФ, включаем в контур подстроечный конденсатор С д с максимальной ёмкостью 50...80 пФ.

4. Максимальная ёмкость контура С м = С н + ΔС о = 880 пФ.

5. Согласно (4) на первом пределе измерений генератор должен работать на частоте
f 01 = 1/(2*π*(L н C м) 0,5) ≈ 0,16*(0,1*10^-6*880*10^-12) ≈ 17 МГц.
Для других пределов измерений находим соответственно: f 02 = 5,36 МГц; f 03 = 1,7 МГц; f 04 = 536 кГц; f 05 = 170 кГц.

6. Шкалу индуктивностей выполняем для предела измерений 1-11 мкГн.

Измерители добротности (куметры)

Приборы, предназначенные для измерения добротности элементов высокочастотных цепей, часто называют куметрами. Действие куметров основано на использовании резонансных явлений, что позволяет измерение добротности сочетать с измерением индуктивности, ёмкости, собственной резонансной частоты и ряда других параметров испытуемых элементов.

Куметр, упрощённая схема которого приведена на рис. 10, содержит три основных компонента: генератор высокой частоты, измерительный контур и индикатор резонанса. Генератор работает в широком, плавно перекрываемом диапазоне частот, например от 50 кГц до 50 МГц; это позволяет многие измерения проводить на рабочей частоте испытуемых элементов.

Исследуемая катушка индуктивности L x , R x через зажимы 1 и 2 включается в измерительный контур последовательно с опорным конденсатором переменной ёмкости С о и конденсатором связи С 2 ; ёмкость последнего должна удовлетворять условию: С 2 >> С о.м, где С о.м - максимальная ёмкость конденсатора С о. Через ёмкостный делитель C 1 , С 2 с большим коэффициентом деления

N = (C 2 + C 1)/C 1

в контур вводится от генератора опорное напряжение U о требуемой высокой частоты f. Возникающий в контуре ток создаёт падение напряжения U С на конденсаторе С о, которое измеряется высокочастотным вольтметром V2.

Входное сопротивление вольтметра V2 в пределах рабочих частот куметра должно быть очень велико. При достаточно высокой чувствительности вольтметр подключают к измерительному контуру через ёмкостный делитель напряжения, входную ёмкость которого учитывают как компонент начальной ёмкости конденсатора С о. Поскольку все конденсаторы, входящие в состав измерительного контура, имеют весьма малые потери, то можно считать, что активное сопротивление контура в основном определяется сопротивлением потерь R x исследуемой катушки.

Рис. 10. Упрощённая схема куметра

Изменением ёмкости конденсатора С о измерительный контур настраивают в резонанс с частотой генератора f по максимальным показаниям вольтметра V2. При этом в контуре будет протекать ток I р ≈ U о /R x , создающий на конденсаторе падение напряжения

U C = I p /(2*π*f*C о) ≈ U о /(2*π*f*C о R x).

Учитывая, что при резонансе 1/(2*π*f*С о) = 2*&pi*f*L x , находим

UC ≈ U o (2*π*f*L x)/R x = U о Q L ,

где Q L = (2*π*f*L x)/R x есть добротность катушки L x при частоте f. Следовательно, показания вольтметра V2 пропорциональны добротности Q L . При фиксированном напряжении U о шкалу вольтметра можно линейно градуировать в значениях Q L ≈ U C /U о. Например, при U о = 0,04 В и пределе измерений вольтметра U п = 10 В напряжениям на входе вольтметра 2, 4, 6, 8 и 10 В будут соответствовать добротности Q L , равные 50, 100, 150, 200 и 250.

Номинальное напряжение U о устанавливают регулировкой режима выходного каскада генератора. Контроль этого напряжения осуществляют по показаниям высокочастотного вольтметра V1, измеряющего напряжение U 1 = U о N на выходе генератора. Например, если шкала добротностей вольтметра V2 выполнена при напряжении Uо = 0,04 В, а коэффициент деления N = 20, то на выходе генератора должно поддерживаться напряжение U x = 0,04*20 = 0,8 В. Предел измерений вольтметра V1 должен несколько превышать расчётное значение напряжения U 1 и равен, например, 1 В.

Повышение верхнего предела измерения добротностей достигается уменьшением напряжения U о до значения, в несколько раз меньшего номинального. Предположим, что при напряжении U о = 0,04 В обеспечивается непосредственный отсчёт добротностей до значения Q L = 250. Если же уменьшить напряжение U о в два раза, до 0,02 В, то стрелка вольтметра V2 будет отклоняться на всю шкалу при добротности Q L = U п /U о = 10/0,02 = 500. Соответственно для повышения верхнего предела измерений в четыре раза, до значения Q L = 1000, измерения следует проводить при напряжении U о = 40/4 = 10 мВ.

Уменьшить напряжение U о до требуемого значения можно двумя способами: изменением коэффициента деления N посредством переключения конденсаторов С 1 различных номиналов либо регулировкой выходного напряжения U 1 генератора. Для удобства измерения больших добротностей вольтметр V1 (или переключатель коэффициентов деления) снабжают шкалой (маркировкой), отсчёт по которой, характеризующий степень уменьшения напряжения U о по сравнению с его номинальным значением, является множителем к шкале добротностей вольтметра V2.

Для проверки работы куметра и расширения его возможностей используют опорные катушки L о с известными индуктивностью и добротностью. Обычно имеется комплект из нескольких сменных катушек L о, которые вместе с конденсатором переменной ёмкости С о обеспечивают резонансную настройку измерительного контура в пределах всего диапазона рабочих частот генератора.

При измерении добротности катушек индуктивности Q L за 10-15 мин до начала работы включают питание прибора и настраивают генератор на требуемую частоту. После прогрева производят установку нуля вольтметров V1 и V2. Испытуемую катушку подключают к зажимам 1 и 2. Постепенным повышением выходного напряжения генератора добиваются отклонения стрелки вольтметра V1 до отметки номинала. Конденсатором Со настраивают контур в резонанс с частотой генератора. Если при этом стрелка вольтметра V2 заходит за шкалу, выходное напряжение генератора уменьшают. Значение добротности Q L определяют как произведение отсчётов по шкале добротностей вольтметра V2 и по шкале множителей вольтметра V1.

Добротность колебательного контура Q K измеряют в том же порядке при подключении катушки контура к зажимам 1 и 2, а его конденсатора - к зажимам 3 и 4. При этом конденсатор С о устанавливают в положение минимальной ёмкости. Если конденсатор исследуемого контура имеет переменную ёмкость, то им производят настройку контура в резонанс на требуемую частоту генератора f; если этот конденсатор постоянный, то резонансную настройку осуществляют изменением частоты генератора.

Измерение куметром индуктивности катушек L x производят способом, рассмотренным выше в связи со схемой на рис. 9. Генератор настраивают на опорную частоту, выбираемую согласно таблице в зависимости от ожидаемого значения L x . Испытуемую катушку подключают к зажимам 1 и 2 Измерительный контур настраивают в резонанс конденсатором С о, по специальной шкале которого оценивают значение L x с учётом цены деления, указанной в таблице. Одновременно способом вариации параметров контура можно определить и собственную ёмкость катушки C L . При двух произвольных значениях ёмкостей С 01 и С 02 конденсатора С о изменением настройки генератора находят резонансные частоты контура f 1 и f 3 . Искомая ёмкость

C L = (C 02 f 4 2 -C 01 f 1 2) : (f 1 2 -f 2 2)

Измерение куметром ёмкостей выполняют методом замещения. Испытуемый конденсатор С х присоединяют к зажимам 3 и 4, а к зажимам 1 и 2 подключают одну из опорных катушек L о, обеспечивающую резонансную настройку контура в выбранном диапазоне частот. Одновременно можно определить и тангенс угла потерь (добротность) конденсатора:

tg δ = 1/(2*π*f*C x R п)

(где R п - сопротивление потерь). Для этого при двух значениях ёмкостей C 01 и С 02 , соответствующих резонансным настройкам контура без конденсатора С х и при подключении последнего, находят добротности контура Q 1 и Q 2 , а затем совершают вычисление по формуле

tg δ = Q 1 Q 2 /(Q 1 -Q 2) * (C 01 -C 02)/C 01

При необходимости генератор куметра можно использовать в качестве измерительного генератора, а электронные вольтметры - для измерения напряжений в широком диапазоне частот.

Инструкция

Приобретите LC-метр. В большинстве случаев, они на обычные мультиметры. Существуют также мультиметры с функцией измерения - такой прибор вам тоже подойдет. Любой из этих приборов можно приобрести в специализированных магазинах, торгующих электронными компонентами.

Обесточьте плату, на которой находится катушка. При необходимости, разрядите конденсаторы на плате. Выпаяйте катушку, которой требуется измерить, из платы (если этого не сделать, в измерение будет внесена заметная погрешность), а затем подключите к входным гнездам прибора (к каким именно, указано в его инструкции). Переключите прибор на точный предел, обычно обозначенный как "2 mH". Если индуктивность меньше двух миллигенри, то она будет определена и показана на индикаторе, после чего измерение можно считать законченным. Если же она больше этой величины, прибор покажет перегрузку - в старшем разряде появится единица, а в остальных - пробелы.

В случае если измеритель показал перегрузку, переключите прибор на следующий, более грубый предел - "20 mH". Обратите внимание на то, что десятичная точка на индикаторе переместилась - изменился масштаб. Если измерение и в этот раз не увенчалось успехом, продолжайте переключать пределы в сторону более грубых до тех пор, пока перегрузка не исчезнет. После этого прочитайте результат. Посмотрев затем на переключатель, вы узнаете, в каких единицах этот результат выражен: в генри или в миллигенри.

Отключите катушку от входных гнезд прибора, после чего впаяйте обратно в плату.

Если прибор показывает нуль даже на самом точном пределе, то катушка либо имеет очень малую индуктивность, либо содержит короткозамкнутые витки. Если же даже на самом грубом пределе индицируется перегрузка, катушка либо оборвана, либо имеет слишком большую индуктивность, на измерение которой прибор не рассчитан.

Видео по теме

Обратите внимание

Никогда не подключайте LC-метр к схеме, находящейся под напряжением.

Полезный совет

Некоторые LC-метры имеют специальную ручку для регулировки. Прочитайте в инструкции к прибору, как ей пользоваться. Без регулировки показания прибора будут неточными.

Катушка индуктивности представляет собой свернутый в спираль проводник, запасающий магнитную энергию в виде магнитного поля. Без этого элемента невозможно построить ни радиопередатчик, ни радиоприемник, на аппаратуру проводной связи. И телевизор, к которому многие из нас так привыкли, без катушки индуктивности немыслим.

Вам понадобится

  • Провода различного сечения, бумага, клей, пластмассовый цилиндр, нож, ножницы

Инструкция

По этим данным рассчитайте значение . Для этого значение напряжения поделите последовательно на 2, число 3.14, значения частоты тока и силы тока. Результатом будет значение индуктивности для данной катушки в Генри (Гн). Важное замечание: катушку присоединяйте только к источнику переменного тока. Активное сопротивление проводника, используемого в катушке должно быть пренебрежимо мало.

Измерение индуктивности соленоида.
Для измерения индуктивности соленоида возьмите линейку или другой инструмент для определения длин и расстояний, и определите длину и диаметр соленоида в метрах. После этого посчитайте количество его витков.

Затем найдите индуктивность соленоида. Для этого, возведите количество его витков во вторую степень, полученный результат умножьте на 3.14, диаметр во второй степени и поделите результат на 4. Полученное число поделите на длину соленоида и умножьте на 0,0000012566 (1,2566*10-6). Это и будет значение индуктивности соленоида.

Если есть такая возможность, для определения индуктивности данного проводника используйте специальный прибор. В его основе лежит схема, именуемая мост переменного тока.

Катушка индуктивности способна накапливать магнитную энергию при протекании электрического тока. Основным параметром катушки является ее индуктивность. Индуктивность измеряется в Генри (Гн) и обозначается буквой L.

Вам понадобится

  • Параметры катушки индуктивности

Инструкция

Индуктивность короткого проводника определяется по : L = 2l(ln(4l/d)-1)*(10^-3), где l - длина провода в , а d - диаметр провода в сантиметрах. Если провод намотан на каркас, то образуется катушка . Магнитный поток концентрируется, и, в результате, величина индуктивности возрастает.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике, равна: L = μ0*μr*s*(N^2)/l. В этой формуле μ0 - магнитная постоянная, μr - относительная магнитная проницаемость материала сердечника, зависящая от частоты), s -

Сегодня на рынке продается множество приборов, измеряющих емкость и индуктивность, только стоят они в несколько раз дороже китайского мультиметра. Тот кому каждый день необходимо производить замеры емкости или индуктивности непременно купит себе такой, а что делать если такая необходимость возникает крайне редко? В таком случае можно применить описанный ниже метод.
Известно, что если на интегрирующую RC цепочку подать прямоугольный импульс, то форма импульса изменится и будет такой как на картинке.

Время, за которое напряжение на конденсаторе достигнет 63% от подаваемого, называется тау. Формула по которой считается тау изображена на рисунке.


В таком случае говорят, что интегрирующая цепочка сгладила фронты прямоугольного импульса.
Так же известно, что если на параллельный LC контур подать прямоугольный импульс, в контуре возникнут затухающие колебания, частота, которых равна резонансной частоте контура. Резонансная частота контура находится по формуле Томсона, из которой можно выразить индуктивность.


Подключается контур через конденсатор малой емкости, чем меньше тем лучше, который ограничивает ток, поступающий в контур. Давайте рассмотрим, как конденсатор малой емкости ограничивает ток.
Для того, чтобы конденсатор зарядился до номинального напряжения ему надо передать определенный заряд. Чем меньше емкость конденсатора, тем меньший заряд ему необходим, чтобы напряжение на обкладках достигло напряжения импульса. Когда мы подаем импульс, конденсатор, малой емкости, очень быстро заряжается и напряжение на обкладках конденсатора становится равно напряжению импульса. Так как напряжение конденсатора и импульса равны, нет разности потенциалов, следовательно ток не течет. При чем ток может перестать течь через конденсатор спустя некоторое время от начала импульса, а оставшуюся часть времени импульса энергия к контуру подводится не будет.
Для проведения эксперимента нам потребуется генератор импульсов прямоугольной формы с частотой 5-6KHz.
Можно собрать его по схеме на рисунке ниже или воспользоваться генератором сигналов, я делал обоими способами.


Теперь, вспомнив, как ведет себя при подаче прямоугольного импульса интегрирующая RC цепочка и параллельный LC контур, соберем простую схему изображенную на картинке.


Сначала измерим емкость конденсатора, место его подключения на схеме обозначено С?. Резистора 1K под рукой не нашлось, поэтому я использовал 100 Ohm и вместо конденсатора 10pF использовал конденсатор 22pF. В принципе номинал резистора можно выбрать любой, но не ниже 50 Ohm, иначе сильно просядет напряжение генератора.
В данном эксперименте я буду использовать генератор сигналов, выходное сопротивление которого равно 50 Ohm. Включим генератор и установим амплитуду 4V, если собирать генератор по схеме то регулировать амплитуду можно, изменяя напряжение питания.


Подключим щупы осциллографа параллельно конденсатору. На осциллографе должна появиться следующая картинка.


Немного увеличим её.


Измерим время, за которое напряжение на конденсаторе достигает 63% от напряжения импульса или 2,52V.


Оно равно 14,8uS. Так как сопротивление генератора включено последовательно с нашей цепочкой его необходимо учесть, в итоге активное сопротивление равно 150 Ohm. Разделим значение тау(14,8 uS) на сопротивления(150 Om) и найдем емкость, она равна 98,7 nF . На конденсаторе написано, что емкость равна 100nF.

Теперь измерим индуктивность. На схеме место подключения катушки индуктивности обозначено L?. Подключаем катушку, включаем генератор и подключаем щуп осциллографа параллельно контуру. На осциллографе увидим такую картинку.


Увеличиваем развертку.


Видим, что период колебаний равен 260KHz.
Ёмкость щупа равна 100pF и в данном случае её необходимо учесть потому, что она составляет 10% от емкости контура. Суммарная емкость контура равна 1,1nF. Теперь подставим в форму для нахождения индуктивности, емкость конденсатора(1,1nF) и частоту колебаний(260KHz). Для таких вычислений я пользуюсь программой Coil32.


Получилось 340,6uH, судя по маркировке индуктивность равна 347uH и это отличный результат. Этот способ позволяет измерять индуктивность с погрешность до 10% .
Теперь мы знаем как измерить емкость конденсатора и индуктивность катушки, используя осциллограф.

Наиболее простой и доступный для радиолюбителей способ измерения индуктивности низкочастотной катушки (дросселя низкой частоты, обмотки трансформатора со стальным сердечником и т. п.) заключается в следующем:

1) собирают схему, изображенную на рис. ; в качестве прибора, измеряющего напряжения на переменном резисторе R и катушке L х используют тестер или отдельный вольтметр переменного тока; максимальное значение сопротивления резистора мощностью рассеяния 0,25-1-0,5 Вт выбирают в пределах 100-30000 Ом (в зависимости от ожидаемой величины).

2.32. Измерение индуктивностей низкочастотных катушек

2) устанавливают с помощью автотрансформатора АТ напряжение на уровне 10 В и замечают показание U 1 вольтметра, то есть падение напряжения на исследуемой катушке;

3) переводят ползунок переключателя из положения 1-3 в положение 1-2 , присоединяя таким образом вольтметр параллельно резистору, и подбирают такое значение сопротивления R = R 2 , при котором падение напряжения на резисторе также равно U 1 .

4) вычисляют индуктивность катушки по формуле:

L" x = 0,00318 √ RR 2 Гн, (32)

где R 1 и R 2 - сопротивления резистора (Ом) при нахождении ползунка переключателя в положениях 1-3 и 1-2.

При отсутствии переменного резистора индуктивность катушки измеряют с помощью постоянного резистора. Схема и процесс измерения остаются прежними, формула же для подсчета L х - дополняется множителем U 1 /U 2 , то есть приобретает вид:

L"" x = 0,00318 R(U 1 /U 2) Гн, (33)

где R - сопротивление резистора, Ом,

U 1 и U 2 - показания вольтметра в положениях 1-3 и 1-2 ползунка переключателя.

В большинстве случаев индуктивные сопротивления обмоток намного превышают их активные сопротивления, поэтому приведенные выше формулы дают достаточно точные значения индуктивности.

Однако если число витков катушки мало, а сопротивление постоянному (или переменному) току велико (несколько десятков или сотен Ом), то L" x и L"" x вычисляют по другим, более точным формулам, а именно:

где R - сопротивление резистора при нахождении ползунка переключателя в положении 1-2; U - напряжение на последовательно соединенных R и L x ; U 2 - напряжение на резисторе равное напряжению U 1 на катушке L х ;

L x " = 0,00318 R 0 / tg α ,

где R - активное сопротивление обмотки;

α - угол, образованный стороной ВС треугольника ABC () и перпендикуляром, опущенным из точки В на продолжение стороны ЛС.

Рис. 2.40 . Треугольник напряжений, определяющий угол α

Тангенс угла α находят так. Откладывают на произвольной прямой MN () отрезок АС , пропорциональный напряжению U 2 на резисторе R . Затем проводят из точек А и С , как из центров, радиусами, пропорциональными напряжению U источника питания и напряжению U 1 на обмотке, две дуги. Соединяют точку В пересечения этих дуг с точкой С и опускают из точки В перпендикуляр BD на прямую MN . В заключение удлиняют высоту BD треугольника ABC до 100 мм (отрезок DK ) и проводят через точку К прямую KP , параллельную стороне ВС треугольника ABC . Если принять отрезок DK за единицу, то отсекаемый при этом на прямой MN отрезок PD и будет численно равен тангенсу угла α .

В тех случаях, когда сопротивление катушки постоянному току превышает ее индуктивное сопротивление, измерение L x проводят при другой, более высокой, частоте (например, 400 или 800 Гц). Форма кривой напряжения на выходе источника напряжения этой повышенной (звуковой) частоты должна быть синусоидальной.

Рис. 2.41. К вопросу нахождения тангенса угла α

При переходе к частоте, не равной 50 Гц, в формулы (32) ~ (35) вводят вместо коэффициента 0,00318 множитель 1/2π f источника питания схемы, где f - частота источника питания схемы.


Практически каждый, кто увлекается электроникой, будь то начинающий, или опытный радиолюбитель, просто обязан иметь в своём арсенале приборы для измерений. Наиболее часто приходится измерять, конечно же, напряжение, ток и сопротивление. Чуть реже, в зависимости от специфики работы, - параметры транзисторов, частоту, температуру, ёмкость, индуктивность.

Сейчас в продаже имеется множество недорогих универсальных цифровых измерительных приборов, так называемых мультиметров. С их помощью можно измерять практически все вышеназванные величины. За исключением, пожалуй, индуктивности, которая очень редко встречается в составе комбинированных приборов. В основном, измеритель индуктивности - это отдельный прибор, также его можно встретить совместно с измерителем ёмкости (LC - метр).

Обычно, измерять индуктивность приходится нечасто. В отношении себя я бы даже сказал - очень редко. Выпаял, например, с какой-нибудь платы катушку, а она без маркировки. Интересно же узнать, какая у неё индуктивность, чтобы потом где-нибудь применить.

Или сам намотал катушку, а проверить нечем. Для таких эпизодических измерений я посчитал нерациональным приобретение отдельного прибора. И вот я начал искать какую-нибудь очень простую схему измерителя индуктивности. Особых требований по точности я не предъявлял, - для любительских самоделок это не столь важно.

В качестве средства измерения и индикации в схеме, описанной в статье, применяется цифровой вольтметр с чувствительностью 200 мВ , который продаётся в виде готового модуля. Я же решил использовать для этой цели обычный цифровой мультиметр UNI-T M838 на пределе измерения 200 мВ постоянного напряжения. Соответственно, схема упрощается, и в итоге приобретает вид приставки к мультиметру.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только

Я не буду повторять описание работы схемы, всё вы можете прочитать в оригинальной статье (архив внизу). Скажу только немного о калибровке.

Калибровка измерителя индуктивности

В статье рекомендуется следующий способ калибровки (для примера первого диапазона).
Подключаем катушку с индуктивностью 100 мкГ, движком подстроечного резистора P1 устанавливаем на дисплее число 100,0. Затем подключаем катушку с индуктивностью 15 мкГ и тем же подстроечником добиваемся индикации числа 15 с точностью 5%.

Аналогично - в остальных диапазонах. Естественно, что для калибровки нужны точные индуктивности, либо образцовый прибор, которым необходимо измерить имеющиеся у вас индуктивности. У меня, к сожалению, с этим были проблемы, так что нормально откалибровать не получилось. В наличии у меня есть десятка два катушек, выпаянных из разных плат, большинство из них без какой-либо маркировки.

Их я измерил на работе прибором (совсем не образцовым) и записал на кусочках бумажного скотча, которые прилепил к катушкам. Но тут ещё проблема и в том, что у любого прибора тоже есть какая-то своя погрешность.

Есть ещё один вариант: можно использовать . Из деталей нужен всего один резистор, два штеккера и два зажима. Также нужно научиться пользоваться данной программой, как пишет автор, измерения «требуют определённой работы мозга и рук». Хотя точность измерений здесь тоже «радиолюбительская», у меня получились вполне сравнимые результаты.

Плата и сборка

Плату разработал в Sprint Layout, берите в разделе файлов. Размеры получились небольшие. Подстроечные резисторы применил б/у, отечественные. Переключатель диапазонов на три положения - от какой-то старой импортной магнитолы. Можно, конечно, применить другие типы, просто подкорректируйте файл печатной платы под свои детали.


Провода к «бананам» и «крокодилам» берём покороче, чтобы уменьшить вклад их индуктивности при измерениях. Концы проводов припаиваем непосредственно к плате (без разъёмов), и в этом месте фиксируем каплей термоклея.

Корпус

Корпус можно изготовить из любого подходящего материала. Я применил для корпуса кусок пластикового монтажного короба 40×40 из отходов. Подогнал под размеры платы длину и высоту короба, получились габариты 67×40x20.

Сгибы в нужных местах делаем так. Нагреваем феном место сгиба до такой температуры, чтобы пластик размягчился, но ещё не плавился. Затем быстро прикладываем к заранее подготовленной поверхности прямоугольной формы, сгибаем под прямым углом и так держим до тех пор, пока пластик не остынет. Для быстрого остывания лучше прикладывать к металлической поверхности.

Чтобы не получить ожогов, используйте рукавицы или перчатки. Сначала рекомендую потренироваться на небольшом отдельном куске короба.

Затем в нужных местах делаем отверстия. Пластик очень легко обрабатывается, так что на изготовление корпуса уходит мало времени. Крышку я зафиксировал маленькими шурупами.
На принтере распечатал наклейку, сверху заламинировал скотчем и приклеил к крышке двусторонней «самоклейкой».

Примеры измерений

Измерения производятся просто и быстро. Для этого подключаем мультиметр, устанавливаем на нём переключателем DC 200 mV , подаём питание около 15 Вольт на измеритель (можно нестабилизированное - стабилизатор есть на плате), крокодилами цепляемся за выводы катушки. Переключателем диапазонов L-метра выбираем нужный предел измерений.

Результаты измерений индуктивности 100 мкГ


Первый диапазон


Второй диапазон


Третий диапазон


С помощью программы LIMP

Недостатки схемы: нужны дополнительно мультиметр и внешний блок питания, несколько сложная и непонятная калибровка (особенно, когда нечем калибровать), невысокая точность измерений, маловат верхний предел.

Я считаю, что этот простой измеритель индуктивности может быть полезен начинающим радиолюбителям, а также тем, у кого не хватает средств на покупку дорогостоящего прибора.

Применение данного измерителя оправдано в тех случаях, когда к точности измерений абсолютных значений индуктивности не предъявляется строгих требований.

Измеритель может, например, пригодиться для контроля индуктивности обмоток при намотке дросселей сетевых фильтров, подавляющих синфазные помехи. При этом важна идентичность двух обмоток дросселя, чтобы не допустить насыщение сердечника.

Источники

1. Статья. В помощь радиолюбителю. Выпуск 10. Информационный обзор для радиолюбителей / Сост. М.В. Адаменко. - М.: НТ Пресс, 2006. - С. 8.