По телекоммуникационным системам. Основные понятия сетей и систем телекоммуникаций. Архитектура сотовых систем связи

Своевременная передача информации - основа стабильного функционирования множества отраслей промышленности и сельского хозяйства.

Современное информационное общество активно используется различные телекоммуникационные системы для обмена большим количеством информации в сжатые сроки.

Современные телекоммуникационные системы и сети

Телекоммуникационные системы представляют собой технические средства, предназначенные для передачи больших объемов информации через оптоволоконные линии связи. Как правило, телекоммуникационные системы предназначены для обслуживания большого количества пользователей: от нескольких десятков тысяч до миллионов. Использование такой системы предполагает регулярную передачу информации в цифровом виде между всеми участниками телекоммуникационной сети.

Главная особенность современного оборудования для сетей - обеспечение бесперебойного соединения, чтобы информация передавалась постоянно. При этом допускается периодическое ухудшение качества связи в момент установления соединения, а также периодические технические неполадки, вызванные внешними факторами.

Виды и классификация телекоммуникационных систем связи

Современные телекоммуникационные системы объединяются по нескольким основным признакам.

В зависимости от назначения, различаются системы телевизионного вещания, персональной связи, а также компьютерные сети.

В зависимости от технического обеспечения, которое используется для передачи информации, выделяются традиционные кабельные коммуникационные системы, более совершенные - оптоволоконные, а также эфирные и спутниковые.

В зависимости от способа кодировки массива информации выделяются аналоговые каналы коммуникации и цифровые. Последний тип получил повсеместное распространение, в то время как аналоговые каналы коммуникации становятся все менее востребованными на сегодняшний день.

Компьютерные системы

Компьютерные системы представляют собой совокупность нескольких ПК, объединенных в единое информационное поле посредством кабелей и специализированных программ.

Совокупность установленного оборудования и программного обеспечения представляет собой автономную саморегулирующуюся систему, которая обслуживает предприятие в комплексе.

В зависимости от своих функций, оборудование компьютерной системы разделяется на:

  • сервисное (для промежуточного и резервного хранения информации);

  • активное (для обеспечения своевременной и качественной подачи сигналов;

  • персональные устройства.

Для обеспечения работы всей системы необходимо соответствующее программное обеспечение, должным образом настроенное, исходя из нужд пользователей.

Радиотехнические и телевизионные системы

В основе радиотехнических систем передачи сообщения лежат электромагнитные колебания, которые транслируются по специальному радиоканалу. Единицей функционирования системы является сигнал, который преобразуется в передающем устройстве и затем трансформируется в информационное сообщение в принимающем.

Основа бесперебойного функционирования радиотехнических систем является линия связи - физическая среда и аппаратные средства, которые обеспечивают своевременную и полную передачу информации.

Телевизионные системы действуют по аналогичному принципу приемника и передатчика. Большинство из них использует цифровой сигнал, позволяющий передавать сообщение в более высоком качестве.

Глобальные телекоммуникационные системы

К глобальным телекоммуникационным системам относятся те аппаратные и программные средства, которые соединяют пользователей независимо от их физического положения на планете. Главная черта глобальных сетей - интеллектуализация, позволяющая легко использовать мощности сети с оптимальной эффективностью, при этом минимизируя затраты на обслуживание оборудования. Среди глобальных сетей выделяется несколько основных видов.

Цифровые сети с интегральными модулями используют непрерывную коммутацию каналов, при этом массивы данных обрабатываются в цифровой форме. Пользователи сети имеют доступ только к некоторым функциям, интерфейс не позволяет самостоятельно изменять технические параметры.

Сети Х25 являются наиболее старыми, надежными и проверенными технологиями передачи информации между неограниченным числом пользователей. Главное отличие таких сетей - наличие устройства для «сборки» отдельных блоков передаваемой информации в «пакеты» для наиболее быстрой передачи.

Асинхронный режим передачи данных - современная технология, используемая для широкополосных сетей, которые основаны на оптоволоконных кабелях.

Оптические телекоммуникационные системы

Основой оптических телекоммуникационных систем является оптоволоконный кабель, который соединяет отдельные аппараты в единую глобальную сеть.

Сигналы передаются с помощью инфракрасного диапазона излучений, при этом пропускная способность оптоволоконного кабеля многократно превышает показатели других видов оборудования.

Технические характеристики материала обеспечивают слабый уровень затухания сигнала на больших расстояниях, что позволяет использовать кабель для коммуникации между материками. Проложенный по дну океана, оптоволоконный кабель защищен от несанкционированного доступа, так как перехватить передаваемые сигналы довольно сложно в техническом плане.

Многоканальные телекоммуникационные системы

Отличительной чертой таких коммуникационных систем является использование нескольких каналов передачи информационных сигналов.

Современные телекоммуникационные системы используют кабельные, волноводные, радиорелейные, а также космические линии связи. Зашифрованный сигнал передается со скоростью в несколько гигабит в секунду на огромные расстояния.

Главное достоинство многоканальных систем - обеспечение стабильной работы. При выходе из строя одного канала связи, автоматически подключается следующий.

Пользователи защищены от внезапного обрыва связи и потери важной информации. В основе таких систем лежат структурированные конструкции из кабелей.

Мультисервисные телекоммуникационные системы

Мультисервисные телекоммуникационные системы представляют собой аппаратную и программную среду, предназначенную для передачи данных по технологии коммутации пакетов - соединения отдельных блоков информации в сообщения большого размера.

Особенность мультисервисных систем - необходимость обеспечения стабильной работы всех элементов транспортной среды. Как правило, для передачи данных, а также речевой и видеоинформации используются различные технологии, но при этом инфраструктура едина. Поэтому основной принцип построения мультисервисных сетей - универсальность технологического решения, с помощью которого обслуживается разнородное оборудование, предназначенное для выполнения различных операций.

Мультисервисная система использует единый канал для передачи данных различных типов. За счет этого экономятся средства на обслуживании и аппаратном обеспечении системы: единая конструкция требует меньшего количества персонала и затрат.

Структура, оборудование и компоненты телекоммуникационных систем

В основе любой телекоммуникационной системы лежат серверы, на которых хранится и обрабатывается необходимая пользователям информация.

Серверные представляют собой небольшие помещения с промышленной вентиляцией, обеспечивающие функционирование множества жестких дисков большого объема.

Пользовательские компьютеры являются средством связи между базой данных и конкретными пользователями информации, осуществляющими поисковые запросы.

Техническая основа телекоммуникационных сетей - это линии связи, то есть среды передачи данных, в качестве которых используются оптоволоконные, коаксиальные или беспроводные каналы связи.

Сетевое оборудование, обеспечивающее передачу и прием данных:

  • модемы;
  • адаптеры;
  • маршрутизаторы;
  • концентраторы.

Подобные устройства дополняют телекоммуникационную систему и необходимы для стабильной работы.

Программное обеспечение позволяет эффективно контролировать работу установленного оборудования, что обеспечивает своевременную передачу информации в нужных объемах.

Методы и средства измерений в телекоммуникационных системах

В зависимости от этапа проведения, выделяются три разновидности измерений:

  1. Установочные измерения производятся после монтажа оборудования, чтобы убедиться в работоспособности всех узлов телекоммуникационной системы.

  2. В ходе работы необходимо проводить настроечные измерения, которые позволяют адаптировать функционал оборудования к изменяющимся условиям внешней среды. Например, если в телекоммуникационной системе изменяются аппаратные или программные средства, необходимо убедиться, что она продолжает полноценно функционировать.

  3. Контрольные или профилактические измерения проводятся регулярно в целях предупреждения внезапных поломок телекоммуникационной сети.

Основы построения и монтажа телекоммуникационных систем и сетей

Главный принцип построения телекоммуникационной системы любого размера и назначения - разделение ее на отдельные функциональные участки. Уменьшается время обслуживания каждого из них, упрощается процедура поиска места поломки при каких-либо технических неисправностях.

Кроме этого, при монтаже систем необходимо позаботиться об изоляции самого кабеля, чтобы передача данных была, как можно меньше зависима от внешних факторов. Современные оптоволоконные кабели располагают под землей, на дне океана или в специальных гофрах, что максимально защищает их от вредных воздействий.

Обеспечение информационной безопасности телекоммуникационных систем

Главная задача при построении системы безопасности в телекоммуникациях - это предотвращение утечки информации через отдельные каналы. Причиной таких явлений может быть и аппаратное повреждение передающего канала (оптоволоконного кабеля), и атака злоумышленников с помощью программных средств.

В первом случае информационная безопасность состоит в обеспечении качественных кабелей, способных выдерживать интенсивные нагрузки и регулярную эксплуатацию.

Во втором необходима разработка, внедрение и обслуживание программных средств, ограничивающих доступ к ресурсам телекоммуникационной системы.

Телекоммуникационные системы гостиниц

Гостиничный бизнес представляет собой целый комплекс услуг, обеспечивающих комфортное проживание постояльцев на территории отеля. Именно поэтому своевременное предоставление полной и достоверной информации обо всем, что может заинтересовать гостей - гарантия удержания клиентов.

Как правило, телекоммуникационные системы в гостиничных комплексах состоят из:

  • видеокоммуникации;
  • компьютерных систем;
  • программного обеспечения.

Таким образом, каждый гость получает удобство проживания в номере и всю необходимую информацию.

Телекоммуникационные системы и сети железнодорожного транспорта

В отличие от отрасли гостеприимства, главный приоритет телекоммуникации в железнодорожной сфере - достоверность информации. Поэтому телекоммуникационные сети в железнодорожном транспорте проектируются таким образом, чтобы всю передаваемую информацию можно было оперативно отследить, при этом вероятным утечкам уделяется минимальное внимание.

Компании, обслуживающие телекоммуникационные системы

Обслуживанием телекоммуникационных систем занимаются поставщики оборудования для проведения данные коммуникаций и сервисные компании.

Среди предприятий можно отметить:

  • «Телекоммуникационные системы» - одна из старейших профильных компаний Санкт-Петербурга, предоставляющая клиентам услуги по текущему ремонту, настройке и обслуживанию систем передачи информации;

  • «Стройком-А» - небольшая компания, предоставляющая услуги обслуживания и совершенствования ветхих телекоммуникационных систем;

  • «Криптоком» - компания узкого профиля, занимающаяся обеспечением безопасности в телекоммуникационных системах предприятий оборонного комплекса.

Производители и поставщики оборудования для телекоммуникационных систем

Производством и поставками оборудование для телекоммуникационных систем занимаются такие компании, как:

  • «Montair» - поставщик готовых решений для телекоммуникационных систем, предлагающий клиентам большой выбор серверного оборудования.

  • «Rdcam» - компания полного цикла, предлагающая клиентам не только готовое оборудование, но и разработку инженерных решений для телекоммуникационных систем.

  • «LAN-ART» - поставщик сетевого коммутационного оборудования и производитель кабелей связи.

Современные телекоммуникационные системы и специализированное оборудование для связи демонстрируется на ежегодной выставке «Связь».

Читайте другие наши статьи:

Классификация сетей

В основу классификации ТВС положены наиболее характерные функциональные, информационные и структурные признаки.

По степени территориальной рассредоточенности элементов сети (абонентских систем, узлов связи) различают глобальные (государственные), региональные и локальные вычислительные сети (ГВС, РВС и ЛВС).

По характеру реализуемых функций сети делятся на вычислительные (основные функции таких сетей - обработка информации), информационные (для получения справочных данных по запросам пользователей), информационно-вычислительные, или смешанные, в которых в определенном, непостоянном соотношении выполняются вычислительные и информационные функции.

По способу управления ТВС делятся на сети с централизованным (в сети имеется один или несколько управляющих органов), децентрализованным (каждая АС имеет средства для управления сетью) и смешанным управлением, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления (например, под централизованным управлением решаются только задачи с высшим приоритетом, связанные с обработкой больших объемов информации).

По организации передачи информации сети делятся на сети с селекцией информации и маршрутизацией информации. В сетях с селекцией информации, строящихся на основе моноканала, взаимодействие АС производится выбором (селекцией) адресованных им блоков данных (кадров): всем АС сети доступны все передаваемые в сети кадры, но копию кадра снимают только АС, которым они предназначены. В сетях с маршрутизацией информации для передачи кадров от отправителя к получателю может использоваться несколько маршрутов. Поэтому с помощью коммуникационных систем сети решается задача выбора оптимального (например, кратчайшего по времени доставки кадра адресату) маршрута.

По типу организации передачи данных сети с маршрутизацией информации делятся на сети с коммутацией цепей (каналов), коммутацией сообщений и коммутацией пакетов. В эксплуатации находятся сети, в которых используются смешанные системы передачи данных.

По топологии, т.е. конфигурации элементов в ТВС, сети делятся на два класса: широковещательные и последовательные. Широковещательные конфигурации и значительная часть последовательных конфигураций (кольцо, звезда с интеллектуальным центром, иерархическая) характерны для ЛВС. Для глобальных и региональных сетей наиболее распространенной является произвольная (ячеистая) топология. Нашли применение также иерархическая конфигурация и “звезда”.

В широковещательных конфигурациях в любой момент времени на передачу кадра может работать только одна рабочая станция (абонентная система). Остальные PC сети могут принимать этот кадр, т.е. такие конфигурации характерны для ЛВС с селекцией информации. Основные типы широковещательной конфигурации - общая шина, дерево, звезда с пассивным центром. Главные достоинства ЛВС с общей шиной - простота расширения сети, простота используемых методов управления, отсутствие необходимости в централизованном управлении, минимальный расход кабеля. ЛВС с топологией типа “дерево” - это более развитый вариант сети с шинной топологией. Дерево образуется путем соединения нескольких шин активными повторителями или пассивными размножителями (“хабами”), каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных. В ЛВС с топологией типа “звезда” в центре находится пассивный соединитель или активный повторитель -достаточно простые и надежные устройства.



В последовательных конфигурациях, характерных для сетей с маршрутизацией информации, передача данных осуществляется последовательно от одной PC к соседней, причем на различных участках сети могут использоваться разные виды физической передающей среды.

К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях. К последовательным конфигурациям относятся: произвольная (ячеистая), иерархическая, кольцо, цепочка, звезда с интеллектуальным центром, снежинка. В ЛВС наибольшее распространение получили кольцо и звезда, а также смешанные конфигурации - звездно-кольцевая, звездно-шинная.

В ЛВС с кольцевой топологией сигналы передаются только в одном направлении, обычно против часовой стрелки. Каждая PC имеет память объемом до целого кадра. При перемещении кадра по кольцу каждая PC принимает кадр, анализирует его адресное поле, снимает копию кадра, если он адресован данной PC, ретранслирует кадр. Естественно, что все это замедляет передачу данных в кольце, причем длительность задержки определяется числом PC. Удаление кадра из кольца производится обычно станцией-отправителем. В этом случае кадр совершает по кольцу полный круг и возвращается к станции-отправителю, который воспринимает его как квитанцию - подтверждение получения кадра адресатом. Удаление кадра из кольца может осуществляться и станцией-получателем, тогда кадр не совершает полного круга, а станция-отправитель не получает квитанции-подтверждения.

Кольцевая структура обеспечивает довольно широкие функциональные возможности ЛВС при высокой эффективности использования моноканала, низкой стоимости, простоте методов управления, возможности контроля работоспособности моноканала.

В широковещательных и большинстве последовательных конфигураций (за исключением кольца) каждый сегмент кабеля должен обеспечивать передачу сигналов в обоих направлениях, что достигается: в полудуплексных сетях связи - использованием одного кабеля для поочередной передачи в двух направлениях; в дуплексных сетях - с помощью двух однонаправленных кабелей; в широкополосных системах - применением различной несущей частоты для одновременной передачи сигналов в двух направлениях.

Глобальные и региональные сети, как и локальные, в принципе могут быть однородными (гомогенными), в которых применяются программно-совместимые ЭВМ, и неоднородными (гетерогенными), включающими программно-несовместимые ЭВМ. Однако, учитывая протяженность ГВС и РВС и большое количество используемых в них ЭВМ, такие сети чаще бывают неоднородными.

Основная функция телекоммуникационных систем (ТКС), или систем передачи данных (СПД) заключается в организации оперативного и надежного обмена информацией между абонентами. Главный показатель эффективности ТКС - время доставки информации - зависит от ряда факторов: структуры сети связи, пропускной способности линий связи, способов соединения каналов связи между взаимодействующими абонентами, протоколов информационного обмена, методов доступа абонентов к передающей среде, методов маршрутизации пакетов.

Типы сетей, линий и каналов связи. В ТВС используются сети связи - телефонные, телеграфные, телевизионные, спутниковые. В качестве линий связи применяются: кабельные (обычные телефонные линии связи, витая пара, коаксиальный кабель, волоконнооптические линии связи (ВОЛC, или световоды), радиорелейные, радиолинии.

Среди кабельных линий связи наилучшие показатели имеют световоды. Основные их преимущества: высокая пропускная способность (сотни мегабит в секунду), обусловленная использованием электромагнитных волн оптического диапазона; нечувствительность к внешним электромагнитным полям и отсутствие собственных электромагнитных излучений, низкая трудоемкость прокладки оптического кабеля; искро-, взрыво- и пожаробезопасность; повышенная устойчивость к агрессивным средам; небольшая удельная масса (отношение погонной массы к полосе пропускания); широкие области применения (создание магистралей коллективного доступа, систем связи ЭВМ с периферийными устройствами локальных сетей, в микропроцессорной технике и т.д.).

Недостатки ВОЛС: передача сигналов осуществляется только в одном направлении; подключение к световоду дополнительных ЭВМ значительно ослабляет сигнал; необходимые для световодов высокоскоростные модемы пока еще дороги; световоды, соединяющие ЭВМ, должны снабжаться преобразователями электрических сигналов в световые и обратно.

В ТВС нашли применение следующие типы каналов связи:

симплексные, когда передатчик и приемник связываются одной линией связи, по которой информация передается только в одном направлений (это характерно для телевизионных сетей связи);

полудуплексные, когда два узла связи соединены также одной линией, по которой информация передается попеременно то в одном направлении, то в противоположном (это характерно для информационно-справочных, запрос-ответных систем);

дуплексные, когда два узла связи соединены двумя линиями (прямой линией связи и обратной), по которым информация одновременно передается в противоположных направлениях.

Коммутируемые и выделенные каналы связи. В ТКС различают выделенные (некоммутируемые) каналы связи и с коммутацией на время передачи информации по этим каналам.

При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечиваются высокая степень готовности системы к передаче информации, более высокое качество связи, поддержка большого объема графика. Из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии достаточно полной загрузки каналов.

Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерны высокая гибкость и сравнительно небольшая стоимость (при малом объеме трафика). Недостатки таких каналов: потери времени на коммутацию (установление связи между абонентами), возможность блокировки из-за занятости отдельных участков линии связи, более низкое качество связи, большая стоимость при значительном объеме трафика.

Аналоговое и цифровое кодирование цифровых данных. Пересылка данных от одного узла ТКС к другому осуществляется последовательной передачей всех битов сообщения от источника к пункту назначения. Физически информационные биты передаются в виде аналоговых или цифровых электрических сигналов. Аналоговыми называются сигналы, которые могут представлять бесчисленное количество значений некоторой величины в пределах ограниченного диапазона. Цифровые (дискретные) сигналы могут иметь одно или конечный набор значений. При работе с аналоговыми сигналами для передачи закодированных данных используется аналоговый несущий сигнал синусоидальной формы, а при работе с цифровыми сигналами - двухуровневый дискретный сигнал. Аналоговые сигналы менее чувствительны к искажению, обусловленному затуханием в передающей среде, зато кодирование и декодирование данных проще осуществляются для цифровых сигналов.

Аналоговое кодирование применяется при передаче цифровых данных по телефонным (аналоговым) линиям связи, доминирующим в региональных и глобальных ТВС и изначально ориентированным на передачу акустических сигналов (речи). Перед передачей цифровые данные, поступающие обычно из ЭВМ, преобразуются в аналоговую форму с помощью модулятора-демодулятора (модема), обеспечивающего цифро-аналоговый интерфейс.

Возможны три способа преобразования цифровых данных в аналоговую форму или три метода модуляции:

амплитудная модуляция, когда меняется только амплитуда несущей синусоидальных колебаний в соответствии с последовательностью передаваемых информационных битов: например, при передаче единицы амплитуда колебаний устанавливается большой, а при передаче нуля -малой или сигнал несущей вообще отсутствует;

частотная модуляция, когда под действием модулирующих сигналов (передаваемых информационных битов) меняется только частота несущей синусоидальных колебаний: например, при передаче нуля - низкая;

фазовая модуляция, когда в соответствии с последовательностью передаваемых информационных битов изменяется только фаза несущей синусоидальных колебаний: при переходе от сигнала 1 к сигналу 0 или наоборот фаза меняется на 180 град..

Передающий модем преобразует (модулирует) сигнал несущей синусоидальных колебаний (амплитуду, частоту или фазу) таким образом, чтобы он мог нести модулирующий сигнал, т.е. цифровые данные от ЭВМ или терминала. Обратное преобразование (демодуляция) осуществляется принимающим модемом. В соответствии с реализуемым методом модуляции различают модемы с амплитудной, частотной и фазовой модуляцией. Наибольшее распространение получили частотная и амплитудная модуляции.

Цифровое кодирование цифровых данных выполняется напрямую, путем изменения уровней сигналов, несущих информацию.

Например, если в ЭВМ цифровые данные представляются сигналами уровней 5В для кода 1 и 0,2В для кода 0, то при передаче этих данных в линию связи уровни сигналов преобразуются соответственно в +12В и -12В. Такое кодирование осуществляется, в частности, с помощью асинхронных последовательных адаптеров RS-232-C при передаче цифровых данных от одного компьютера к другому на небольшие (десятки и сотни метров) расстояния.

Синхронизация элементов ТКС. Синхронизация - это часть протокола связи. В процессе синхронизации связи обеспечивается синхронная работа аппаратуры приемника и передатчика, при которой приемник осуществляет выборку поступающих информационных битов (т.е. замер уровня сигнал в линии связи) строго в моменты их прихода. Синхросигналы настраивают приемник на передаваемое сообщение еще до его прихода поддерживают синхронизацию приемника с приходящими битами данных.

В зависимости от способов решения проблемы синхронизации различают синхронную передачу, асинхронную передачу и передачу с автоподстройкой.

Синхронная передача отличается наличием дополнительной линии связи (кроме основной, по которой передаются данные) для передачи синхронизирующих импульсов (СИ) стабильной частоты. Каждый СИ подстраивает приемник. Выдача битов данных в линию связи передатчиком и выборка информационных сигналов приемником производятся в моменты появления СИ. В синхронной передаче синхронизация осуществляется весьма надежно, однако этой достигается дорогой ценой - необходимостью дополнительной линии связи.

Асинхронная передача не требует дополнительной линии связи. Передача данных осуществляется небольшими блоками фиксированной длины (обычно байтами). Синхронизация приемника достигается тем, что перед каждым передаваемым байтом посылается дополнительный бит - стартбит, а после переданного байта - еще один дополнительный бит -стопбит. Для синхронизации используется стартбит. Такой способ синхронизации может использоваться только в системах с низкими скоростями передачи данных.

Передача с автоподстройкой, также не требующая дополнительной линии связи, применяется в современных высокоскоростных системах передачи данных. Синхронизация достигается за счет использования самосинхронизирующих кодов (СК). Кодирование передаваемых данных с помощью СК заключается в том, чтобы обеспечить регулярные и частые изменения (переходы) уровней сигнала в канале. Каждый переход уровня сигнала от высокого к низкому или наоборот используется для подстройки приемника. Лучшими считаются такие СК, которые обеспечивают переход уровня сигнала не менее одного раза в течение интервала времени, необходимого на прием одного информационного бита. Чем чаще переходы уровня сигнала, тем надежнее осуществляется синхронизация приемника и увереннее производится идентификация принимаемых битов данных.

Наиболее распространенными являются следующие самосинхронизирующие коды :

NRZ-код (код без возвращения к нулю);

RZ-код (код с возвращением к нулю);

Манчестерский код;

Биполярный код с поочередной инверсией уровня (например, код AMI).

Рис. Схемы кодирования сообщения с помощью самосинхронизирующих кодов

На рис. представлены схемы кодирования сообщения 0101100 с помощью этих СК.

Для характеристики и сравнительной оценки СК используются следующие показатели:

уровень (качество) синхронизации;

Надежность (уверенность) распознавания и выделения принимаемых информационных битов;

Требуемая скорость изменения уровня сигнала в линии связи при использовании СК, если пропускная способность линии задана;

Сложность (и, следовательно, стоимость) оборудования, реализующего СК.

Цифровые сети связи (ЦСС). В последние годы в ТВС все большее распространение получают цифровые сети связи, в которых используется цифровая технология.

Причины распространения цифровой технологии в сетях:

Цифровые устройства, используемые в ЦСС, производятся на основе интегральных схем высокой интеграции; по сравнению с аналоговыми устройствами они отличаются большой надежностью и устойчивостью в работе и, кроме того, в производстве и эксплуатации, как правило, дешевле;

Цифровую технологию можно использовать для передачи любой информации по одному каналу (акустических сигналов, телевизионных видеоданных, факсимильных данных);

Цифровые методы преодолевают многие из ограничений передачи и хранения, которые присущи аналоговым технологиям.

В ЦСС при передаче информации осуществляется преобразование аналогового сигнала в последовательность цифровых значений, а при приеме - обратное преобразование.

Аналоговый сигнал проявляется как постоянное изменение амплитуды во времени. Например, при разговоре по телефону, который действует как преобразователь акустических сигналов в электрические, механические колебания воздуха (чередование высокого и низкого давления) преобразуются в электрический сигнал с такой же характеристикой огибающей амплитуды. Однако непосредственная передача аналогового электрического сигнала по телефонной линии связи сопряжена с рядом недостатков: искажением сигнала вследствие его нелинейности, которая увеличивается усилителями, затуханием сигнала при передаче через среду, подверженностью влиянию шумов в канале и др.

В ЦСС эти недостатки преодолимы. Здесь форма аналогового сигнала представляется в виде цифровых (двоичных) образов, цифровых значений, представляющих соответствующие значения огибающей амплитуды синусоидальных колебаний в точках на дискретных уровнях. Цифровые сигналы также подвержены ослаблению и шумам при их прохождении через канал, однако на приемном пункте необходимо отмечать лишь наличие или отсутствие двоичного цифрового импульса, а не его абсолютное значение, которое важно в случае аналогового сигнала. Следовательно, цифровые сигналы принимаются надежнее, их можно полностью восстановить, прежде чем они из-за затухания станут ниже порогового значения.

Преобразование аналоговых сигналов в цифровые осуществляется различными методами. Один из них - импульсно-кодовая модуляция (ИКМ), предложенная в 1938 г. А.Х. Ривсом (США). При использовании ИКМ процесс преобразования включает три этапа: отображение, квантование и кодирование (рис. 12.2).

Рис. 12.2. Преобразование аналогового сигнала в 8-элементный цифровой код

Первый этап (отображение) основан на теории отображения Найквиста. Основное положение этой теорий гласит: “Если аналоговый сигнал отображается на регулярном интервале с частотой не менее чем в два раза выше максимальной частоты исходного сигнала в канале, то отображение будет содержать информацию, достаточную для восстановления исходного сигнала”. При передаче акустических сигналов (речи) представляющие их электрические сигналы в телефонном канале занимают полосу частот от 300 до 3300 Гц. Поэтому в ЦСС принята частота отображений, равная 8000 раз в секунду. Отображения, каждое из которых называется сигналом импульсно-амплитудной модуляции (ИАМ), запоминаются, а затем трансформируются в двоичные образы.

На этапе квантования каждому сигналу ИАМ придается квантованное значение, соответствующее ближайшему уровню квантования. И ЦСС весь диапазон изменения амплитуды сигналов ИАМ разбивается на 128 или 256 уровней квантования. Чем больше уровней квантования, тем точнее амплитуда ИАМ-сигнала представляется квантованным уровнем.

На этапе кодирования каждому квантованному отображению ставится в соответствие 7-разрядный (если число уровней квантования равно 128) или 8-разрядный (при 256-шаговом квантовании) двоичный код. На рис. 12.2 показаны сигналы 8-элементного двоичного кода 00101011, соответствующего квантовому сигналу с уровнем 43. При кодировании 7-элементнымй кодами скорость передачи данных по каналу должна составлять 56 Кбит/с (это произведение частоты отображения на разрядность двоичного кода), а при кодировании 8-элементными кодами - 64 Кбит/с.

В современных ЦСС используется и другая концепция преобразования аналоговых сигналов в цифровые, при которой квантуются и затем кодируются не сами сигналы ИАМ, а лишь их изменения, причем число уровней квантования принимается таким же. Очевидно, что такая концепция позволяет производить преобразование сигналов с большей точностью.

Спутниковые сети связи. Появление спутниковых сетей связи вызвало такую же революцию в передаче информации, как изобретение телефона.

Первый спутник связи был запущен в 1958 г., а в 1965 г. запущен первый коммерческий спутник связи (оба - в США). Эти спутники были пассивными, позже на спутниках стали устанавливать усилители и приемопередающую аппаратуру.

Для управления передачей данных между спутником и наземными РТС используются следующие способы:

1. Обычное мультиплексирование - с частотным разделением и временным разделением. В первом случае весь частотный спектр радиоканала разделяется на подканалы, которые распределяются между пользователями для передачи любого графика.

Издержки такого способа: при нерегулярном ведении передач подканалы используются нерационально; значительная часть исходной полосы пропускания канала используется в качестве разделительной полосы для предотвращения нежелательного влияния подканалов друг на друга. Во втором случае весь временной спектр делится между пользователями, которые по своему усмотрению распоряжаются предоставленными временными квантами (слотами). Здесь также возможно простаивание канала из-за нерегулярного его использования.

2. Обычная дисциплина “первичный / вторичный” с использованием методов и средств опроса/выбора. В качестве первичного органа, реализующего такую дисциплину управления спутниковой связью, чаще выступает одна из наземных РТС, а реже - спутник. Цикл опроса и выбора занимает значительное время, особенно при наличии в сети большого количества АС. Поэтому время реакции на запрос пользователя может оказаться для него неприемлемым.

3. Дисциплина управления типа “первичный / вторичный” без опроса, с реализацией метода множественного доступа с квантованием времени (ТДМА). Здесь слоты назначаются первичной РТС, называемой эталонной. Принимая запросы от других РТС, эталонная станция в зависимости от характера графика и занятости канала удовлетворяет эти запросы путем назначения станциям конкретных слотов для передачи кадров. Такой метод широко используется в коммерческих спутниковых сетях.

4. Равноранговые дисциплины управления. Для них характерно, что все пользователи имеют равное право доступа к каналу и между ними происходит соперничество за канал. В начале 70-х годов Н.Абрамсон из Гавайского университета предложил метод эффективного соперничества за канал между некоординируемыми пользователями, названный системой ALOHA. Существует несколько вариантов этой системы: система, реализующая метод случайного доступа (случайная ALOHA); равноранговая приоритетная слотовая система (слотовая ALOHA) и др.

К основным преимуществам спутниковых сетей связи относятся следующие:

Большая пропускная способность, обусловленная работой спутников в широком диапазоне гигагерцовых частот. Спутник может поддерживать несколько тысяч речевых каналов связи. Например, один из используемых в настоящее время коммерческих спутников имеет 10 транспондеров, каждый из которых может передавать 48 Мбит/с;

Обеспечение связи между станциями, расположенными на очень больших расстояниях, и возможность обслуживания абонентов в самых труднодоступных точках;

Независимость стоимости передачи информации от расстояния между взаимодействующими абонентами (стоимость зависит от продолжительности передачи или объема передаваемого графика);

Возможность построения сети без физически реализованных коммутационных устройств, обусловленная широковещательностью работы спутниковой связи. Эта возможность связана со значительным экономическим эффектом, который может быть получен по сравнению с использованием обычной неспутниковой сети, основанной на многочисленных физических линиях связи и коммуникационных устройствах.

Недостатки спутниковых сетей связи:

Необходимость затрат средств и времени на обеспечение конфиденциальности передачи данных, на предотвращение возможности перехвата данных “чужими” станциями;

Наличие задержки приема радиосигнала наземной станцией из-за больших расстояний между спутником и РТС. Это может вызвать проблемы, связанные с реализацией канальных протоколов, а также временем ответа;

Возможность взаимного искажения радиосигналов от наземных станций, работающих на соседних частотах;

Подверженность сигналов на участках Земля - спутник и спутник -Земля влиянию различных атмосферных явлений.

Для решения проблем с распределением частот в диапазонах 6/4 и 14/12 ГГц и размещением спутников на орбите необходимо активное сотрудничество многих стран, использующих технику спутниковой связи.

Что такое телекоммуникации?

Телекоммуникация - это передача знаков, сигналов, сообщений, письменного текста, изображений, звуков или сведений любого рода посредством проводных, радио-оптических или других электромагнитных систем. Телекоммуникация происходит, когда при обмене информацией между участниками связи используются технологии. Передача происходит либо электрически через физические носители, такие как кабели, либо с помощью электромагнитного излучения. Пути схожих передач часто разделены на каналы связи, что составляет преимущества мультиплексирования. Этот термин часто используется во множественном числе - телекоммуникации, поскольку включает в себя множество различных технологий.

Ранние средства связи на расстоянии включали в себя визуальные сигналы, такие как маяки, дымовые сигналы, семафорный телеграф, сигнальные флаги и оптические гелиографы. Другие виды дальней связи, используемые в прошлом - это звуковые сообщения, такие как закодированный барабанный бой, звук сигнальной трубы и громкие свистки. В технологиях дальней связи 20-го и 21-го веков, как правило, использовались электрические и электромагнитные технологии, такие как телеграф, телефон и телетайп, сетевые коммуникации, радио, микроволновая передача, оптоволоконные линии и спутники связи.

Революция в беспроводной связи произошла в первом десятилетии 20-го века благодаря новаторским разработкам в области радиосвязи Гульельмо Маркони, нобелевского лауреата по физике 1909 года. В число других известных первых изобретателей и разработчиков в области электрических и электронных телекоммуникаций входят Чарльз Уитстон и Сэмюэль Морзе (изобретатели телеграфа), Александр Грэхем Белл (изобретатель телефона), Эдвин Армстронг и Ли де Форест (изобретатели радио), а также Владимир Зворыкин, Джон Лоуги Бэрд и Фило Фарнсуорт (изобретатели и разработчики телевидения).

Происхождение названия "Телекоммуникации"

Слово "телекоммуникации" представляет собой соединение греческой приставки теле- (τηλε-), что означает "далеко" или "издалека" и латинского - "communicare" - "делать общим", "связывать". Его современное использование заимствовано из французского, потому что оно было использовано в этом значении в 1904 году французским инженером и романистом Едуаром Эстаунье. Слово "коммуникация" вошло в английский язык в конце 14-го века. Оно происходит от старофранцузского "сomunicación", которое, в свою очередь, произошло от латинского "communicationem" (в именительном падеже "communicatio"), существительное от основы причастия прошедшего времени "communicare" - "делить", "разделить"; "общаться", "передавать", "сообщать"; "присоединять", "объединять", "делать общим" от "communis" - общее.

История развития телекоммуникаций

Маяки и голуби

В средние века обычно использовались цепи сигнальных вышек на возвышенностях, как средство ретрансляции сигнала. Эти сигнальные цепи обладали тем недостатком, что могли передавать только один бит информации, так что смысл сообщения, такого как "замечен враг " должен был быть заранее согласован. Один известный пример их использования был во время испанской Армады, когда цепь сигнальных вышек (маяков) передавала сигнал из Плимута в Лондон.

В 1792 году Шапп, французский инженер, построил первую стационарную систему визуальной телеграфии (или семафорной линии) между Лиллем и Парижем. Однако, семафор испытывал необходимость в квалифицированных операторах и дорогостоящих башнях, размещаемых с интервалом от десяти до тридцати километров. В результате конкуренции со стороны электрического телеграфа, последняя коммерческая семафорная линия прекратила свою работу ​​в 1880 году.

Голуби в качестве доставщиков почты иногда использовались в различных культурах на протяжении всей истории человечества. Голубиная почта, как полагают, зародилась у персов и применялась римлянами как вспомогательное средство. У Фронтинуаса, упоминается использование Юлием Цезарем почтовых голубей в качестве посыльных при завоевания Галлии. Греки, также передавали имена победителей Олимпийских игр в разные города, посредством почтовых голубей. В начале 19-го века, голландское правительство применяло такую почтовую систему на островах Ява и Суматра. А в 1849 году Пол Джулиус Ройтер организовал голубиную почту для доставки биржевой информации между Аахеном и Брюсселем, которая действовала в течение года, пока между этими городами не появилась телеграфная связь.

Телеграф и телефон

Сэр Чарльз Уитстон и сэр Уильям Фотерджил Кук изобрели электрический телеграф в 1837. Кроме того, считается, что первый коммерческий электрический телеграф был построен Уитстоном и Куком и открыт 9 апреля 1839 года. Оба изобретателя рассматривали свое устройство, как "усовершенствование (к тому времени уже существовавшего) электромагнитного телеграфа", а не как новое устройство.

Сэмюэль Морзе независимо разработал версию электрического телеграфа, продемонстрированную 2 сентября 1837 года. Код, разработанный им, был важным шагом вперед по сравнению с методом сигнализации Уитстона. Первый трансатлантический телеграфный кабель был успешно проложен 27 июля 1866 года, что позволило впервые осуществить трансатлантическую передачу данных.

Обычный телефон был изобретен Александром Беллом и Элиша Греем в 1876 году независимо друг от друга. Антонио Меуччи был изобретателем первого устройства, которое позволяло производить электрическую передачу голоса по линии ещё в 1849 году. Однако в устройстве Меуччи было мало практической ценности, поскольку оно основывалось на электрофонном эффекте и, таким образом, требовалось размещать приемник в рот пользователям, чтобы "слышать", что было сказано. Первые коммерческие службы телефонной связи появились в 1878 и 1879 годах по обе стороны Атлантики в городах Нью-Хейвене и Лондоне.

В 1832 году Джеймс Линдсей продемонстрировал своим ученикам в классе сеанс беспроволочной телеграфии. К 1854 году он смог продемонстрировать передачу через реку Ферт-оф-Тей из Данди в Вудхэвен, Шотландию, на расстоянии двух миль (3 км), с использованием воды в качестве передающей среды. В декабре 1901 года, Гульельмо Маркони установил беспроводную связь между Сент-Джонс, Ньюфаундленд (Канада) и Полдху, Корнуолл (Англия), что принесло ему в 1909 году Нобелевскую премию по физике (которую он разделил с Карлом Брауном). Хотя, радиосвязь на короткие расстояния уже была продемонстрирована ещё в 1893 году, Николой Тесла перед Национальной ассоциацией электрического света.

25 марта 1925 года Джон Логи Бэрд сумел продемонстрировать передачу движущихся изображений в лондонском универмаге Селфриджес. Устройство Бэрда было основано на диске Нипкова и стало известно под названием механическое телевидение. Оно легло в основу экспериментальных передач, сделанных Британской радиовещательной корпорацией, начиная 30 сентября 1929 года. Тем не менее, большинство телевизоров 20-ого века было создано на основе электронно-лучевой трубки, изобретенной К. Брауном. Первый образец такого многообещающего телевидения был произведен и продемонстрирован своей семье Фарнсуортом 7 сентября 1927 года.

Компьютеры и Интернет

11 сентября 1940 года Джордж Стибиц передал задачу для своего калькулятора комплексных чисел в Нью-Йорке, используя телетайп, и получил в ответ результаты расчетов в Дартмутском колледже в Нью-Гемпшире. Такая конфигурация централизованного компьютера (ЭВМ) с удаленными простыми терминалами оставалась популярной и в 1970-е годы. Тем не менее, уже в 1960-х годах, начали исследовать коммутацию пакетов - технологию, которая посылает сообщение по частям к месту назначения в асинхронном режиме без прохождения через централизованную ЭВМ. Сеть с четырьмя узлами, появившаяся 5 декабря 1969 года, стала прообразом ARPANET, которая к 1981 году разрослась до 213 узлов. ARPANET в конце концов слилась с другими сетями, так появился Интернет. В то время, как развитие Интернета было в центре внимания Инжене́рного Совета Интернета (IETF), опубликовавшего серию рабочих предложений, другие сетевые разработки, такие как локальная сеть (LAN), Ethernet (1983) и маркер протокола кольцо (1984) происходили в промышленных лабораториях.

Информационные технологии

Современные телекоммуникации основаны на ряде ключевых концепций, которые прошли путь прогрессивного развития и улучшений на протяжении более ста лет.

Основные элементы телекоммуникаций

Телекоммуникационные технологии в первую очередь могут быть разделены на проводные и беспроводные методы. Хотя, в целом, базовая телекоммуникационная система состоит из трех основных частей, которые всегда присутствуют в той или иной форме:

Передатчик, который принимает информацию и преобразует её в сигнал.

Среда передачи, которая также называется физическим каналом, несущим сигнал. Примером этого может служить "канал свободного пространства ".

Приемник, который принимает сигнал из канала и преобразует его обратно в полезную для получателя информацию.

Например, в радиовещательной станции усилитель большой мощности радиостанции является передатчиком и передающая антенна является интерфейсом между усилителем мощности и "каналом свободного пространства ". Свободное пространство является передающей средой и антенна приемника является интерфейсом между "каналом свободного пространства " и приемным устройством. Затем приемник радио получает радиосигнал, где он преобразуется из электричества в звук, который могут услышать люди.

Иногда встречаются, телекоммуникационные системы "Duplex" - системы с двусторонней связью, объединяющие в одной коробке и передатчик, и приемник, то есть приемопередатчики. Например, сотовый телефон является приемопередатчиком. Электронная схема передатчика и электроника приемника внутри трансивера в действительности вполне независимы друг от друга. Это можно легко объяснить тем фактом, что радиопередатчики содержат усилители мощности, которые работают с электрическими мощностями, порядка нескольких ватт или киловатт, но радиоприемники имеют дело с радиосигналами, мощность которых порядка нескольких микроватт или нановатт. Следовательно, трансиверы необходимо тщательно проектировать и монтировать, чтобы изолировать высокомощную часть схемы от маломощной части, чтобы не создавались помехи.

Телекоммуникации через фиксированные линии называются двухточечным соединением, потому что связь здесь осуществляется между одним передатчиком и одним приемником. Телекоммуникации, осуществляемые посредством радиопередачи, называются широковещательной связью, потому что они осуществляются между одним мощным передатчиком и многочисленными маломощными, но чувствительными радиоприемниками.

Телекоммуникации, в которых множество передатчиков и несколько приемников были разработаны, чтобы совместно использовать один и тот же физический канал, называются мультиплекс системы. Совместное использование физических каналов с использованием мультиплексирования часто дает очень значительное сокращение расходов. Мультиплекс системы размещаются в телекоммуникационных сетях и мультиплексированные сигналы коммутируются узлами с необходимым приемным терминалом.

Аналоговая и цифровая связь

Коммуникационные знаки могут быть переданы либо посредством аналоговых, либо посредством цифровых сигналов. Существуют аналоговые системы связи и цифровые системы связи. При аналоговой системе, сигнал непрерывно изменяется вместе с изменением информации. В цифровом системе, информация кодируется в виде набора дискретных значений (например, набор единиц и нулей). Во время распространения и приема, информация, содержащаяся в аналоговых сигналах, неизбежно ухудшается из-за нежелательного физического шума. Выходной сигнал передатчика является практически бесшумным. Как правило, шум в системе связи, можно выразить в виде прибавления или вычитания из желательного сигнала случайной помехи. Эта форма шума называется аддитивным шумом, учитывая, что шум может быть отрицательным или положительным в разные моменты времени. Шум, который не является аддитивным является шумом гораздо более сложного для описания и анализа вида.

С другой стороны, если добавка раздражающего воздействия шума не превышает определенный порог, то информация, содержащаяся в цифровом сигнале, не будет искажаться. Устойчивость к шуму является ключевым преимуществом цифровых сигналов по сравнению с аналоговыми сигналами.

Телекоммуникационные сети

Телекоммуникационная сеть представляет собой совокупность передатчиков, приемников и каналов связи, которые обмениваются сообщениями. Некоторые цифровые сети связи содержат один или несколько маршрутизаторов, которые работают вместе, чтобы передавать информацию именно тому пользователю, для которого она предназначена. Сеть аналоговых коммуникаций состоит из одного или нескольких коммутаторов, которые устанавливают связь между двумя или несколькими пользователями. Для обоих типов сетей, могут понадобиться повторители, чтобы усилить или воссоздать сигнал при передаче на большое расстояние. Это делается для борьбы с ослаблениями, которые могут сделать сигнал неотличимым от шума. Еще одним преимуществом цифровых систем по сравнению с аналоговыми является то, что их выходное значение легче хранить в памяти в виде двух состояний напряжения (высокий уровень и низкий уровень) , чем значения, непрерывно изменяющиеся в диапазоне состояний.

Каналы связи

Термин "канал" имеет два различных значения. В одном смысле, канал является физическим носителем, который несет сигнал между передатчиком и приемником. Например, атмосфера для звуковых коммуникаций, оптоволокно для некоторых видов оптической связи, коаксиальный кабель для связи посредством напряжений и электрических токов в них, и свободное пространство для коммуникации с использованием видимого света, инфракрасных волн, ультрафиолетового света и радиоволн. Этот последний канал называется "каналом свободного пространства ". Передача радиоволн от одного места к другому не зависит от наличия или отсутствия атмосферы между ними. Радиоволны проходят через идеальный вакуум так же легко, как они путешествуют по воздуху, туман, облака, или любую другую газовую среду.

Другое значение термина "канал" рассматривается в области телекоммуникаций, в смысле канала связи, который является частью передающей среды так, что вся среда может быть использована для передачи нескольких потоков данных одновременно. Например, одна радиостанция может транслировать радиоволны в свободном пространстве на частотах в районе 94,5 МГц (мегагерц), в то время как другая радиостанция может одновременно транслировать радиоволны на частотах в районе 96,1 МГц. Каждая радиостанция будет передавать радиоволны по полосе частот около 180 кГц (килогерц), с центром на частотах, указанных выше, которые называются «несущие частоты". Каждая станция в данном примере отстоит от соседних станций на 200 кГц, а разница между 200 кГц и 180 кГц (20 кГц), является инженерным допуском, учитывающим недостатки в системе связи.

В приведенном выше примере, "канал свободного пространства " был разделен на каналы связи в соответствии с частотами, и для каждого канала назначена отдельная полоса частот для передачи радиоволн. Эта система разделения среды в каналах в соответствии с частотой, называется "мультиплексирование с частотным разделением каналов". Другой термин для обозначения того же принципа называется "спектральным уплотнением каналов", которое чаще всего используется в оптической связи, когда несколько передатчиков используют одну и ту же физическую среду.

Другой способ разделения коммуникационной среды на каналы заключается в том, чтобы выделить каждому отправителю повторяющийся отрезок времени ("временной интервал", например, 20 миллисекунд из каждой секунды) и разрешить каждому отправителю отправлять сообщения только в пределах этого, выделенного данному отправителю, промежутка времени. Этот метод разделения среды на каналы связи, называется «мультиплексированием с разделением по времени" (TDM), и используется в оптоволоконной связи. Некоторые системы радиосвязи используют TDM в пределах выделенного канала FDM. Таким образом, эти системы используют гибрид TDM и FDM.

Модуляция

Формирование сигнала для передачи информации называется модуляцией. Модуляция может быть использована для представления цифрового сообщения в качестве аналогового сигнала. Такой вид модуляции обычно называется "манипуляцией" - термин, унаследованный от применения кода Морзе в области телекоммуникаций и подразделяется на несколько методов манипуляции (к ним относятся фазовая манипуляция, частотная манипуляция и амплитудная манипуляция). В "Bluetooth", например, используется фазовая манипуляция для обмена информацией между различными устройствами. Кроме того, существует манипуляция, комбинирующая изменения фазы и амплитуды, которая называется (на жаргоне данной области) квадратурной амплитудной манипуляцией (КАМ) и используются в системах цифрового радио с высокой пропускной способностью.

Модуляция может также использоваться для передачи низкочастотных аналоговых сигналов на более высоких частотах. Это полезно, так как аналоговые низкочастотные сигналы не могут быть эффективно переданы через свободное пространство. Следовательно, информация из аналогового низкочастотного сигнала должна быть внедрена в сигнал высокой частоты (известной как "несущая волна") перед передачей. Есть несколько различных схем модуляции, доступных для достижения этой цели, два самых основных метода модуляции - амплитудная модуляция (AM) и частотная модуляция (ЧМ). Примером этого процесса является "внедрение" голоса диджея в несущую волну частоты 96 МГц с использованием частотной модуляции (голос затем будет "выловлен" радиоприемником на частоте "96 FM"). Кроме того, модуляция имеет то преимущество, что она может использовать мультиплексирование с частотным разделением (FDM).

Телекоммуникации в обществе

Телекоммуникации имеют важное социальное, культурное и экономическое влияние на современное общество. В 2008 году доходы в телекоммуникационной отрасли составили $ 4,7 трлн, или чуть менее 3 % от валового мирового продукта (по официальному курсу).

Влияние информационных технологий на экономику

Микроэкономика

На микроэкономическом уровне, компании использовали телекоммуникации для развития глобальных бизнес-империй. Это само собой разумеющееся в случае интернет-магазина Amazon.com, но, согласно академику Эдварду Ленерту, даже обычный розничный торговец Walmart извлек выгоду благодаря лучшей телекоммуникационной инфраструктуре по сравнению с конкурентами. В городах по всему миру домовладельцы используют свои телефоны, чтобы заказывать и организовывать различные домашние услуги, начиная от поставок пиццы до услуг электриков. Даже в относительно бедных слоях общества было отмечено использование электросвязи для собственной пользы. В округе Бангладеш Нарсингди изолированные сельские жители используют сотовые телефоны для заказов товаров непосредственно у оптовиков, чтобы приобретать товары по более выгодной цене. В Кот-д"Ивуаре, производители кофе отслеживают по мобильным телефонам почасовые изменения цен на кофе и продают его по лучшей цене.

Макроэкономика

На макроэкономическом уровне, Ларс-Хендрик Роллер и Леонард Вейверма предложили причинно-следственную связь между хорошей телекоммуникационной инфраструктурой и экономическим ростом. Мало кто оспаривает существование корреляции, хотя некоторые утверждают, что неправильно рассматривать это отношение, как причинное.

В связи с получением экономических преимуществ при использовании хорошей телекоммуникационной инфраструктуры, растет беспокойство по поводу неравного доступа к услугам электросвязи в различных стран мира, называемое цифровым неравенством. В 2003 году исследование, проведенное Международным союзом электросвязи (МСЭ) показал, что примерно в 1/3 стран на каждые 20 человек приходится менее одного мобильного телефона и в 1/3 стран на каждые 20 человек приходится менее одного стационарного телефона. В плане доступа к Интернету, примерно в половине всех стран на каждые 20 человек приходится менее одного выхода в Интернет. Исходя из этой информации и данных об уровне образования в МСЭ был разработан показатель, который измеряет общую возможность доступа граждан к информационным и коммуникационным технологиям. По данному показателю Швеция, Дания и Исландия входят в тройку лидеров, в то время как африканские страны Нигерия, Буркина-Фасо и Мали замыкают данный рейтинг.

Роль коммуникаций в современном мире

Телекоммуникации играют значительную роль в общественных отношениях. В виду того, что в такие устройства как телефон изначально представляли практическую ценность (например, способность вести бизнес или заказ услуг), то совсем не учитывался их социальный аспект. Так продолжалось до конца 1920-х годов, а 1930-е годы социальные аспекты устройства стали важной темой в продвижении телефонов. Новые рекламные акции обращались теперь к эмоциям потребителя, подчеркивая важность социальных разговоров и желания оставаться на связи с семьей и друзьями.

С тех пор роль, которую телекоммуникации играют в общественных отношениях приобретает все большее значение. В последние годы популярность сайтов социальных сетей резко возросло. Эти сайты позволяют пользователям общаться друг с другом, а также обмениваться фотографиями, событиями и видеть статусы и профили других пользователей. В профилях можно указать возраст, интересы, сексуальные предпочтения и статус отношений. Таким образом, эти сайты могут играть важную роль во всем, от организации общественных движений до ухаживаний.

До возникновения сайтов социальных сетей, такие технологии, как служба коротких сообщений (SMS) и телефон также оказывали значительное влияние на социальное взаимодействие. В 2000 году группа по маркетинговым исследованиям Ipsos MORI сообщила, что 81% пользователей в возрасте от 15 до 24 лет в Соединенном Королевстве использовали службу коротких сообщений для координации общественных отношений и 42% - для флирта.

Важность телекоммуникаций в жизни человека

В культурном плане, телекоммуникации расширили возможности граждан на получение доступа к музыке и кино. С помощью телевидения, люди могут смотреть фильмы, которые они раньше не видели в своем собственном доме, не выезжая в видеомагазин или кинотеатр. С помощью радио и Интернета, люди могут слушать музыку, которую они никогда раньше не слышали, не посещая музыкальный магазин.

Телекоммуникации также изменили способ получения новостей. Согласно исследованиям некоммерческой организации Pew Internet и American Life Project за 2006 год из опрошенных чуть более 3000 американцев большинство указали в качестве источника новостей - телевизор, радио или газеты.

Телекоммуникации оказали и значительное влияние на рекламу. TNS Media Intelligence сообщила, что в 2007 году, 58% расходов на рекламу в Соединенных Штатах было потрачено на средства массовой информации, зависящих от телекоммуникационных услуг.

Международный союз электросвязи

Многие страны приняли законодательство, которое соответствует требованиям Регламента международной электросвязи, установленных Международным союзом электросвязи (МСЭ), который является "ведущим учреждением ООН в области информационно-коммуникационных технологий». В 1947 году в Атлантик-Сити конференция МСЭ решила "предоставить международную защиту всех частот, зарегистрированных в новом международном списке частот и используемых в соответствии с Регламентом радиосвязи." Согласно Регламента радиосвязи МСЭ, принятых в Атлантик-Сити, все частоты, указанные в международной регистрации частот, рассмотренные Советом и зарегистрированные в Международном Реестре частот "имеют право на международную защиту от вредных помех."

С учетом глобальных перспектив происходили политические дебаты и принимались законодательные акты, касающиеся управления электросвязью и вещанием. В истории вещания случались и дискуссии в отношении приравнивания к обычной связи, такой как печать, современных телекоммуникаций, таких как радиовещание. С началом Второй мировой войны произошел взрывной рост международного пропагандистского вещания Страны, их правительства, мятежники, террористы и народное ополчение использовали все возможные методы телекоммуникаций и телерадиовещания с целью продвижения своей пропаганды. Патриотическая пропаганда политических движений и колонизации началась с середины 1930-х. В 1936 году BBC вела пропагандистские передачи в арабском мире частично противопоставляя свои трансляции подобным трансляциям из Италии, которая также имела колониальные интересы в Северной Африке.

Современные повстанцы, такие как те, что принимали участие в последней войне в Ираке, часто используют запугивающие телефонные звонки, SMS-сообщения и распространение изощренных видео нападения на войска коалиции, участвующей в антитеррористической операции. "Мятежники-сунниты даже имеют свою собственную телевизионную станцию, Аль-Zawraa, которая будучи запрещенной иракским правительством, по-прежнему вещает из города Эрбиль, Иракский Курдистан, даже после того, как под давлением коалиции ему приходилось менять спутниковый хостинг по несколько раз."

Современные средства массовой информации

Продажи телекоммуникационного оборудования

Согласно данным, собранным Гартнер Арс-текника, было произведена продажа основного пользовательского телекоммуникационного оборудования во всем мире в миллионах единиц:

Телефон

В телефонной сети один абонент подключается к другому абоненту посредством переключателей на различных телефонных станциях. Переключатели образуют электрическое соединение между двумя пользователями и установки этих переключателей определяются в электронном виде, когда вызывающий абонент набирает номер. После того, как соединение установлено, голос вызывающего абонента преобразуется в электрический сигнал с помощью небольшого микрофона в телефонной трубке вызывающего абонента. Этот электрический сигнал передается через сеть пользователю на другом конце, где и преобразуется обратно в звук небольшого динамика в трубке вызываемого абонента.

Стационарные телефоны в большинстве жилых домов являются аналоговыми, то есть голос говорящего непосредственно определяет напряжение сигнала. Несмотря на то, что вызовы на короткие расстояния могут быть обработаны от начала и до конца как аналоговые сигналы, провайдеры телефонных услуг все чаще и чаще осуществляют сквозное преобразование входящих сигналов в цифровых сигналов для передачи. Преимуществом такого подхода является то, что оцифрованные речевые данные могут передаваться совместно с данными из Интернета и могут быть полностью воспроизведены при осуществлении связи на большое расстояние (в отличие от аналоговых сигналов, которые неизбежно будут искажены шумом).

Мобильные телефоны оказали значительное влияние на телефонные сети. Число абонентов мобильной связи в настоящее время превышает число абонентов стационарной связи. Продажи мобильных телефонов в 2005 году составили 816,6 млн. с учетом того, что эта цифра почти поровну распределена между рынками Азии / Тихого океана (204 млн.), Западной Европы (164 млн.), ЦЕБВА (Центральная Европа, Ближний Восток и Африка) (153,5 млн.) , Северной Америки (148 млн.) и Латинской Америки (102 млн.). С учетом новых подписок за пять лет с 1999 года, Африка опережает другие рынки с ростом 58,2%. Все чаще эти телефоны обслуживаются системами, в которых голосовые сообщения передаются в цифровом виде, таких как GSM или W-CDMA и сокращается число аналоговых систем, таких как AMPS.

Также произошли кардинальные изменения в телефонной связи, оставшиеся за кадром. Начиная с деятельности ТАТ-8 в 1988 году, 1990-е годы увидели широкое внедрение систем на основе оптоволокна. Преимущество коммуникаций с применением оптоволокна в том, что они предлагают кардинальное увеличение пропускной способности. Собственно, ТАТ-8 был в состоянии поддерживать в 10 раз больше телефонных звонков, чем самый современный медный кабель, проложенный в ту пору, а современные оптоволоконные кабели способны поддерживать в 25 раз больше телефонных звонков, чем поддерживалось ТАТ-8. Это увеличение пропускной способности обусловлено целым рядом факторов: Во-первых, оптические волокна физически намного меньше, чем конкурирующие технологии. Во-вторых, они не страдают от перекрестных помех, а это означает то, что несколько сотен из них могут быть легко собраны вместе в одном кабеле. И, наконец, улучшения в мультиплексировании привели к экспоненциальному росту пропускной способности одного волокна.

Коммуникации во многих современных оптоволоконных сетях осуществляются согласно протокола, известного как Асинхронный режим передачи (ATM). Протокол ATM позволяет осуществлять совместную передачу данных. Он подходит для телефонных сетей общего пользования, поскольку устанавливает путь для данных через сеть и связывает соглашение о трафике с этим путем. Соглашение о трафике, по существу, соглашение между клиентом и сетью о том, как сеть должна обрабатывать данные; если сеть не может отвечать соглашению о трафике, то соединение с такой сетью отклоняется. Это важно, потому что телефонные соединения должны происходить с гарантированной поддержкой постоянной скорости передачи, что обеспечит передачу голоса вызывающего абонента полностью без задержек или провалов. Есть конкуренты ATM, такие как многопротокольная коммутация по меткам (MPLS), которые выполняют аналогичную задачу и, как ожидается, вытеснят ATM в будущем.

Радио и телевидение

В системе широковещательной передачи центральная вещательная вышка большой мощности передает высокочастотную электромагнитную волну многочисленным маломощным приемникам. Высокочастотная волна, посланная вышкой, модулируется сигналом, содержащим визуальную или звуковую информацию. Приемник, в свою очередь, настроен таким образом, чтобы принять и усилить высокочастотную волну и, используя демодулятор, выделить сигнал, содержащий визуальную или звуковую информацию. Широковещательный сигнал может быть как аналоговым (сигнал изменяется непрерывно вместе с информацией) или цифровой (информация кодируется в виде набора дискретных значений).

Индустрия вещательных СМИ вступила в критический поворотный этап своего развития с переходом многих стран от аналогового к цифровому телевещанию. Этот шаг стал возможным благодаря производству дешевых, быстрых и более функциональных интегральных схем. Главным преимуществом цифрового вещания является то, что оно избавлено от ряда недостатков, характерных для традиционных аналоговых передач. На телевизионной картинке это проявляется устранением проблем, таких как снежные картины, ореолы и другие искажения. Это происходит из-за характера аналоговой передачи, что означает, искажения, вызванные шумом, будут заметны в конечном результате. Цифровая передача преодолевает эту проблему, так как цифровые сигналы восстанавливаются до дискретных значений при приеме и, следовательно, малые возмущения не влияют на конечный результат. В упрощенном примере, если бинарное сообщение 1011 передавалось с амплитудой сигналов: , а полученные сигналы имеют амплитуды: , то при декодировании получаем в двоичном сообщении 1011 - идеальное воспроизведение того, что было отправлено. Из этого примера, можно заметить проблему цифровой передачи, заключающейся в том, что, если шум достаточно велик, то он может существенно изменить декодированное сообщение. Используя прямую коррекцию ошибок, приемник может исправить несколько битовых ошибок в полученном сообщении, но слишком большое количество шума приведет к малопонятным выходным сигналам и, следовательно, нарушению передачи.

В цифровом телевизионном вещании, существует три конкурирующих стандарта, которые, вероятно, будут приняты во всем мире. Это ATSC, DVB и ISDB стандарты. Все три стандарта используют MPEG-2 для сжатия видео. ATSC использует Dolby Digital AC-3 для сжатия аудио, ISDB использует Advanced Audio Coding (MPEG-2 Часть 7) и DVB не имеет стандарт для сжатия звука, но, как правило, использует MPEG-1 Часть 3 Layer 2. Выбор модуляции также изменяется от схемы к схеме. В цифровом аудиовещании, стандарты гораздо более унифицированы практически во всех странах, решивших принять стандарт Digital Audio Broadcasting (также известный как стандарт Эврика 147). Исключение составляют Соединенные Штаты, которые выбрали HD Radio. HD Radio, в отличие от Эврика 147, основан на способе передачи, известном как IBOC, что позволяет осуществлять передачу цифровой информации обычными АМ или ЧМ аналоговыми передатчиками.

Тем не менее, несмотря на ожидание перехода на "цифровое", аналоговое телевидение всё ещё передается в большинстве стран. Исключением являются Соединенные Штаты, где прекращено аналоговое телевизионное вещание (всеми, кроме телевизионных станций очень малой мощности) с 12 июня 2009 года после двойной отсрочки переключения. В Кении, также прекратилось аналоговое телевизионное вещание в декабре 2014 года, после многократных переносов даты. Для аналогового телевидения, есть три стандарта, используемых для трансляции цветного телевидения. Они известны как PAL (немецкая разработка), NTSC (Североамериканская разработка) и SECAM (французская разработка). Важно понимать, что эти способы передачи цветного телевидения не имеют ничего общего со стандартами черно-белого телевидения, которые также различные в разных странах. Для аналогового радио, переход на цифровое радио затрудняется тем, что аналоговые приемники значительно дешевле цифровых приемников. Выбор модуляции для аналогового радио, как правило, осуществляется между амплитудной (AM) или частотной (FM) модуляциями. Для достижения стереофонического воспроизведения используется амплитудно-модулированная поднесущая для стерео FM.

Интернет

Интернет представляет собой всемирную сеть компьютеров и компьютерных сетей, которые взаимодействуют друг с другом с помощью Интернет-протокола. Любой компьютер в Интернете имеет уникальный IP-адрес, который может быть использован другими компьютерами для направления информации к нему. Следовательно, любой компьютер в сети Интернет может отправить сообщение на любой другой компьютер, используя его IP-адрес. Эти сообщения несут с собой IP-адрес и передающего компьютера, что позволяет осуществлять двустороннюю связь. Интернет - это обмен сообщениями между компьютерами.

По оценкам, 51% информации, передаваемой через двусторонние телекоммуникационные сети в 2000 году было передано через Интернет,большая же часть остальной информации (42%) - через стационарный телефон. К 2007 году Интернет явно доминировал и захватил 97% всей информации в телекоммуникационных сетях (большая часть остальной информации(2%) - с помощью мобильных телефонов. По состоянию на 2008 г. примерно 21,9% мирового населения имеет доступ к сети Интернет с самым высоким уровнем доступа (измеряется в процентах от населения) в Северной Америке (73,6%), в Океании / Австралии (59,5%) и в Европе (48,1 %). В широкополосном доступе лидируют: Исландия (26,7%), в Южная Корея (25,4%) и Нидерланды (25,3%) .

Интернет работает отчасти из-за протоколов, которые определяют, как компьютеры и маршрутизаторы обмениваются данными между собой. Характер компьютерной сетевой связи поддается рассмотрению с позиции многоуровневого подхода, когда одни протоколы в стеке протоколов запускаются более или менее независимо от других протоколов. Это позволяет протоколам более низкого уровня быть настроенными на определенное состояние в сети до тех пор, пока не изменится способ работы протокола более высокого уровня. Практический пример того, почему это важно, состоит в том, что это позволяет Интернет-браузеру выполнить одинаково один и тот же код, независимо от того, подключен компьютер к сети Интернет через Ethernet или Wi-Fi соединение. О протоколах часто говорят с точки зрения их места в эталонной модели OSI, который появился в 1983 году в качестве первого шага в неудачной попытке создать универсально принятый набор сетевых протоколов.

Для Интернета характерно изменение по несколько раз физической среды и канального протокола на протяжении всего маршрута, проходящего пакетами. Это потому, что Интернет не накладывает никаких ограничений на то, какая физическая среда и какие протоколы передачи данных могут использоваться. Это приводит к принятию информации и протоколов, которые наиболее подходящий для ситуации в локальной сети. На практике в большинстве случаев межконтинентальной связи будет использоваться протокол с асинхронным режимом передачи (ATM) или его более современный эквивалент - на основе оптоволокна. Это объясняется тем, что в большинство сеансов межконтинентальной связи в Интернете используют ту же инфраструктуру, что и коммутируемая телефонная сеть общего пользования.

На сетевом уровне происходит стандартизация с интернет протоколом IP, необходимым для логической адресации. Для World Wide Web, эти "IP-адреса" выводятся из "человекочитаемой" формы с использованием системы доменных имен DNS (например, 72.14.207.99 происходящего от www.google.com). На данный момент наиболее широко используемой версией интернет-протокола является версия четыре, но переход к версии шесть неизбежна.

На транспортном уровне, большинство сеансов связи принимает либо протокол управления передачей (TCP) или протокол передачи дейтаграмм пользователя (UDP). TCP используется, когда необходимо, чтобы каждое отправленное сообщение принималось другим компьютером, тогда как UDP используется, когда это просто желательно. В случае TCP, пакеты передаются повторно, если они будут потеряны и упорядочены, прежде чем они будут представлены в более высокие слои. С помощью UDP пакеты не упорядочиваются и повторно не передаются в случае утери. Оба TCP и UDP-пакеты переносят и номера портов, чтобы указать, какое приложение или процесс должен обработать пакет. Поскольку некоторые протоколы прикладного уровня используют определенные порты, сетевые администраторы могут управлять трафиком в соответствии с конкретными требованиями. Например, чтобы ограничить доступ к Интернету, блокируя трафик, предназначенный для конкретного порта или повлиять на работу некоторых приложений путем присвоения приоритета.

Над транспортным уровнем, существуют определенные протоколы, которые иногда используются и свободно помещаются в сессии и презентации слоев, прежде всего это протоколы: Secure Sockets Layer (SSL) и Transport Layer Security (TLS) . Эти протоколы гарантируют, что данные, передаваемые между двумя сторонами, остаются полностью конфиденциальными. И, наконец, на уровне приложений многим из пользователей интернет-протоколов известны такие, как HTTP (веб-браузер), POP3 (электронная почта), FTP (передача файлов), IRC (Internet чат), BitTorrent (общий доступ к файлам) и XMPP (мгновенный обмен сообщениями).

Интернет-протокол для передачи голоса (VoIP) позволяет использовать пакеты данных для синхронных голосовых коммуникаций. Пакеты данных маркируются как пакеты голосовых сообщений и могут иметь приоритет для передачи в режиме реального времени, синхронный разговор менее подвержен конкуренции с другими типами трафика данных, которые могут быть отсроченными (т.е. передача файлов или электронной почты) или быть заранее буферизованными (то есть аудио и видео) без искажений. Это предоставление приоритета хорошо работает, когда сеть имеет достаточную пропускную способность для всех VoIP-вызовов, происходящих одновременно, а в сети включена опция установления приоритетов т.е. частная корпоративная сеть, но Интернет в целом не может быть настроеным таким образом, и поэтому возникает большая разница в качестве VoIP звонков через частную сеть и через Интернет общего пользования.

Локальные и глобальные компьютерные сети

Несмотря на рост Интернета, характеристики локальных вычислительных сетей (ЛВС) - компьютерные сети, которые не выходят за пределы нескольких километров, сохраняют отличие. Это происходит потому, что сети такого масштаба не требуют всех функций, связанных с более крупными сетями и остаются зачастую более рентабельным и эффективным без них. Будучи не связаными с Интернетом, они также имеют преимущества в конфиденциальности и безопасности. Тем не менее, целенаправленное отсутствие прямого подключения к Интернету не обеспечивает гарантированную защиту от хакеров, вооруженных сил или экономически мощных держав. Эти угрозы существуют, если есть какие-либо методы для удаленного подключения к локальной сети.

Глобальные вычислительные сети (WAN) являются частными компьютерными сетями, которые могут распространяться на тысячи километров. Опять же, некоторые из их преимуществ включают в себя конфиденциальность и безопасность. Первоначально локальные и глобальные сети предназначались для вооруженных сил и спецслужб, которые должны держать свои данные в безопасности и тайне.

В середине 1980-х годов появились несколько протоколов связи, чтобы заполнить пробелы между канальным и прикладным уровнями эталонной модели OSI. К ним относятся Appletalk, IPX и NetBIOS с установленным протоколом IPX, доминирующим в начале 1990-х, благодаря своей популярности среди пользователей MS-DOS. TCP / IP, существующий и на данный момент, как правило, использовался только в крупных государственных и научно-исследовательских учреждениях.

Поскольку популярность Интернета возросла и его трафик потребовалось направить в частные сети, TCP / IP протоколы заменили существующие технологии локальной сети. Дополнительные технологии, такие как DHCP, разрешающие компьютерам на основе IP /TCP самонастраиваться в сети. Такие функции осуществляются также в наборах протоколов AppleTalk / IPX / NetBIOS.

Режимы асинхронной передачи (ATM) или многопротокольной коммутации по меткам (MPLS) представляют собой типичные протоколы канального уровня для более крупных сетей, таких как WANs; Ethernet и Token Ring, являются типичными протоколами канального уровня для локальных сетей. Эти протоколы отличаются от прежних протоколов тем, что они являются более простыми, например, они опускают функции, такие как гарантированное качество обслуживания, а также устранение коллизий. Оба эти различия позволяют создавать более экономичные системы.

Несмотря на скромную популярность IBM Token Ring в 1980-х и 1990-х годах, практически все локальные сети в настоящее время используют проводное или беспроводное Ethernet-оборудование. На физическом уровне, большинство проводных Ethernet реализаций используют медные кабели витой пары (в том числе общих 10BASE-T сетей). Тем не менее, в некоторых ранних реализациях использовались более тяжелые коаксиальные кабели, а в недавних реализациях (особенно в высокоскоростных) использовалось оптоволокно. Когда используется оптоволокно, то следует различать многомодовые волокна от одномодовых волокон. Многомодовые волокна можно рассматривать как более толстое оптоволокно, более дешевое в произвдстве, но имеющий недостаток в виде более узкой полезной полосы частот и худшего затухания, а, следовательно, и худшие характеристики дальней связи.

Скорость передачи информации

Эффективный объём информации, вовлеченной в обмен по всему миру посредством двусторонних сетевых телекоммуникаций, возрос с 281 петабайт информации в 1986 году, до 471петабайт в 1993 году, с 2,2 эксабайт в 2000 году до 65 эксабайтов в 2007 году (с учетом оптимального сжатия). Это информационный эквивалент приблизительно соответствует двум страниц газет на человека в день в 1986 году и шесть целым газетам на человека в день к 2007 году. С учётом данного роста, телекоммуникации играют всё большую роль в развитии мировой экономики и сектор мировой телекоммуникационной индустрии составил в 2012 году около 4,7 трлн. долларов. Объем мирового рынка телекоммуникационных услуг составит $ 1,5 трлн в 2010 году, что соответствует 2,4% от валового внутреннего продукта в мире (ВВП).

Введение. 2

Цифровая телекоммуникационная система. 5

Телекоммуникация. 5

1.2)Телекоммуникационная система. 9

1.3)Цифровая система передачи. 12

1.3.1) Вторичная цифровая система передачи ИКМ120. 21

1.3.2) Третичная цифровая система передачи ИКМ480. 25

1.3.4. STM-N.. 32

1.4) Виды ЦТС.. 43

1.5) Цифровые системы передачи ИКМ и STM.. 56

Основные преимущества технологии SDH: 57

Недостатки технологии SDH: 58

2.2. Определить шаг квантования по амплитуде. 66

2.3. Разработать схему временного спектра ЦТС. 71

2.4) Разработать укрупнённую структурную схему ЦТС, состоящую из оборудования временного группообразования, оборудования линейного тракта оконечной станции и промежуточных станций линейного тракта. 86

Заключение. 91

Список литературы. 92

Введение

Научно-технический прогресс конца XX века открыл пути создания глобального информационного общества, в котором информационные и телекоммуникационные технологии приобретают особое значение, складываясь в инфокоммуникационный сектор.

Человечество переходит на новый уровень общения и передачи информации. Теперь для того, что бы передать сообщение нет необходимости находиться на близком расстоянии. Есть возможность передавать информацию из разных точек планеты. Телекоммуникационные системы оказывают большое влияние на все сферы жизни человека. России необходимо финансировать развитее телекоммуникационных систем, т.к. государство стоит на ступень ниже, в сравнении с мировыми тенденциями.

Развитие связи в начале ХХI века характеризуется следующими понятиями: универсализация, интеграция, интеллектуализация - в части технических средств и в сетевом плане; глобализация, персонализация - в части услуг. Прогресс в области связи основан на разработке и освоении новых телекоммуникационных технологий, а также на дальнейшем развитии и совершенствовании еще не исчерпавших свой потенциал существующих.

Развитие инфокоммуникационного сектора в мире происходит одновременно по нескольким направлениям. При этом в области телекоммуникации и информации оно характеризуется созданием глобальных инфокоммуника-ционных систем, основу которых составляют цифровые системы передачи (ЦСП) различного назначения с широким использованием современных оптоволоконных технологий и цифровых систем коммутации различного вида и уровня.

Во всем мире сейчас активно развивается цифровая связь – это основная тенденция развития телекоммуникаций. Качество цифровой связи имеет ряд преимуществ перед обычной связью. На основе цифровых систем передачи строят протяженные транспортные сети почти любого назначения. Благодаря научному прогрессу современные цифровые системы передачи данных позволяют одновременно передавать аудио, видео и цифровой сигнал.

Последние годы в России с точки зрения развития телекоммуникаций не были стабильными. Им предшествовал мировой кризис в области телекоммуникаций, который привел к снижению темпов роста. Тем не менее даже в этот период развивались и внедрялись новые телекоммуникационные технологии. В течение этого периода в рамках ОАО "Связьинвест" была проведена структуризация бывших сетей электросвязи в сторону их укрупнения, созданы сильные, высоко капитализированные, прибыльные и конкурентно-способные компании. В результате в России существует семь межрегиональных компаний (МРК), а на телекоммуникационном рынке действует около 6500 зарегистрированных новых операторов. В июне 2003 года Государственной думой РФ был принят новый федеральный закон "О связи", введенный в действие с 1 января 2004 года. С этим связано по существу завершение одного этапа развития связи в России и начало нового этапа.

Модернизация сетей наземного эфирного вещания путем перехода на цифровые технологии является мировой тенденцией, которой следует и Российская Федерация. Переход на цифровое вещание в России не только позволит обеспечить население многопрограммным вещанием заданного качества, но и окажет стимулирующее воздействие на развитие рынков СМИ, связи и производства отечественного теле - и радиооборудования, создание инфраструктуры производственно-внедренческих, сбытовых и сервисных организаций, дальнейшее развитие малого и среднего предпринимательства и развитие конкуренции в данной сфере. Основной целью, согласно Концепции развития телерадиовещания в Российской Федерации на 2008 - 2015 годы, является обеспечение населения многопрограммным вещанием с гарантированным предоставлением общедоступных телевизионных каналов и радиоканалов заданного качества, что позволит государству полнее реализовать конституционное право граждан на получение информации.

В соответствии с этой целью поставлены следующие задачи:

Исследовать основные принципы цифровой системы передачи данных;

Рассмотреть какие цифровые системы передачи существуют;

Изучить особенности построения цифровых систем передачи.

Цифровая телекоммуникационная система

Телекоммуникация

Телекоммуникация (греч. tele - вдаль, далеко и лат. communicatio -общение) - передача данных на большие расстояния.

Средства телекоммуникации - совокупность технических, программных и организационных средств для передачи данных на большие расстояния.

Телекоммуникационная сеть - множество средств телекоммуникации, связанных между собой и образующих сеть определённой топологии (конфигурации). Телекоммуникационными сетями являются:

Телефонные сети для передачи телефонных данных (голоса);

Радиосети для передачи аудиоданных;

Телевизионные сети для передачи видеоданных;

Цифровые (компьютерные) сети или сети передачи данных (СПД) для передачи цифровых (компьютерных) данных.

Данные в цифровых телекоммуникационных сетях формируются в виде сообщений, имеющих определенную структуру и рассматриваемых как единое целое.

Данные (сообщения) могут быть:

Непрерывными;

Дискретными.

Непрерывные данные могут быть представлены в виде непрерывной функции времени, например, речь, звук, видео. Дискретные данные состоят из знаков (символов).

Передача данных в телекоммуникационной сети осуществляется с помощью их физического представления - сигналов.

В компьютерных сетях для передачи данных используются следующие типы сигналов:

Электрический (электрический ток);

Оптический (свет);

Электромагнитный (электромагнитное поле излучения - радиоволны).

Для передачи электрических и оптических сигналов применяются кабельные линии связи соответственно:

Электрические (ЭЛС);

Волоконно-оптические (ВОЛС).

Передача электромагнитных сигналов осуществляется через радиолинии (РЛС) и спутниковые линии связи (СЛС).

Сигналы, как и данные, могут быть:

Непрерывными;

Дискретными.

При этом непрерывные и дискретные данные могут передаваться в телекоммуникационной сети либо в виде непрерывных, либо в виде дискретных сигналов.

Процесс преобразования (способ представления) данных в вид, требуемый для передачи по линии связи и позволяющий, в некоторых случаях, обнаруживать и исправлять ошибки, возникающие из-за помех при их передаче, называется кодированием. Примером кодирования является представление данных в виде двоичных символов. В зависимости от параметров среды передачи и требований к качеству передачи данных могут использоваться различные методы кодирования.

Линия связи - физическая среда, по которой передаются информационные сигналы, формируемые специальными техническими средствами, относящимися к линейному оборудованию (передатчики, приемники, усилители и т.п.). Линию связи часто рассматривают как совокупность физических цепей и технических средств, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения. Сигнал, передаваемый в линии связи, называется линей-ным (от слова линия).

Линии связи можно разбить на 2 класса:

Кабельные (электрические и волоконно-оптические линии связи);

Беспроводные (радиолинии).

На основе линий связи строятся каналы связи.

Канал связи представляет собой совокупность одной или нескольких линий связи и каналообразующего оборудования, обеспечивающих передачу данных между взаимодействующими абонентами в виде физических сигналов, соответствующих типу линии связи.

Канал связи может состоять из нескольких последовательных линий связи, образуя составной канал, например: между абонентами А1 и А2 сформирован канал связи, включающий телефонные (ТфЛС) и волоконно-оптическую (ВОЛС) линии связи. В то же время, в одной линии связи, как будет показано ниже, может быть сформировано несколько каналов связи, обеспечивающих одновременную передачу данных между несколькими парами абонентов.

Телекоммуникационная система

Под телекоммуникационными системами (ТС) принято понимать структуры и средства, предназначенные для передачи больших объёмов информации (как правило, в цифровой форме) посредством специально проложенных линий связи или радиоэфира. При этом предполагается обслу-живание значительного количества пользователей систем (от нескольких тысяч). Телекоммуникационные системы включают такие структуры переда-чи информации, как телевещание (коллективное, кабельное, спутниковое, сотовое), телефонные сети общего пользования (ТфОП), сотовые системы связи (в том числе макро- и микро- сотовые), системы персонального вызова, спутниковые системы связи и навигационное оборудование, волоконные сети передачи информации.

Следует отметить, что основным требованием к системам связи является отсутствие факта прерывания связи, но допускается некоторое ухудшение качества передаваемого сообщения и ожидание установления связи.

По назначению телекоммуникационные системы группируются следующим образом:

· системы телевещания;

· системы связи (в т.ч. персонального вызова);

· компьютерные сети.

По типу используемой среды передачи информации:

· кабельные (традиционные медные);

· оптоволоконные;

· эфирные;

· спутниковые.

По способу передачи информации:

· аналоговые;

· цифровые.

Мы рассмотрим способы передачи: аналоговые и цифровые.

Выделяют два класса в телекоммуникационных системах связи (коммутации). Это аналоговые и цифровые системы.

Аналоговые системы передачи и связи (коммутации).
В аналоговых системах все процессы (прием, передача, связь) основана на аналоговых сигналах. Примеров таких систем множество: телевизионное вещание, радио, телефонная коммутация (связь).
Цифровые системы передачи и связи (коммутации).
В цифровых системах все процессы происходят от цифровых (дискретных) сигналов. Примерами являются - современные объекты связи, цифровая телефония, цифровое телевидение. Эволюционный процесс перехода от аналоговых систем к цифровым связан:

1. век новых технологий, соответственно в технике все большее распространяются микропроцессорные технологии обработки сигналов;

2. создается высокоскоростная паутина цифровых телекоммуникационных сетей;
Соединительными нитками паутины являются магистрали, которые представляют собой набор цифровых каналов коммутации (связи) глобального и локального масштаба. Обращение к этим каналам разрешено различным государственным структурам, предприятиям бизнеса, частным пользователям. Качество передачи и связи соответственно очень высокое.
Давайте приведем преимущества цифровых систем передачи и обработки данных над аналоговыми системами:
1. Надежность передачи данных, а так же высокая помехоустойчивость;
2. Хранение данных на высочайшем уровне;
3. Завязана на вычислительной технике;
4. Минимизация возникновения ошибок при обработке, передачи, коммутации (связи) данных;

Цифровая система передачи

Управления, автоматическая система управления, в которой осущест-вляется квантование сигналов по уровню и по времени. Непрерывные сигна-лы (воздействия), возникающие в аналоговой части системы (в которую входят обычно объект управления, исполнительные механизмы иизмери-тельные преобразователи), подвергаются преобразованию в аналого цифро-вых преобразователях, откуда в цифровой форме поступают для обработки в ЦВМ. Результаты обработки данных подвергаются обратному преобразова-нию в виде непрерывных сигналов (воздействий) подаются на исполнитель-ные механизмы объекта управления. Использование ЦВМ позволяет значи-тельно улучшить качество управления, оптимизировать управление сложны-ми промышленными объектами. Примером может служить автоматизированная система управления технологическими процессами (АСУТП).

Понятие “цифровая передача” является довольно широким и включает множество вопросов, таких как выбор параметров импульсов в конкретной среде передачи, преобразование цифровой последовательности к коду передачи и т.п.
Синхронизация В цифровых системах передачи необходимо обеспечить выполнение всех операций по обработке цифровых сигналов синхронно и последовательно. Если бы эти операции происходили локально и синхронизировались от одного источника, то проблем не было. В этом случае к стабильности задающего генератора не предъявлялись бы жесткие требования, так как на всех участках происходили бы одинаковые изменения тактовой частоты. Но поскольку любую систему цифровой передачи можно рассматривать как состоящую из двух и более полукомплектов приема и передачи, разнесенных на значительные расстояния, то требования к синхронизации становятся основополагающими. Высокостабильные и следовательно дорогие, тактовые генераторы могут оказаться бесполезными из-за линейных помех, вызывающих фазовые дрожания тактовых сигналов. По сути дела фазовые дрожания вызывают изменение числа битов, переданных по линии. Для борьбы с этим явлением используются устройства эластичной памяти, в которых запись осуществляется по тактовой частоте принимаемого сигнала, а считывание по тактовой частоте местного генератора. Такая память позволяет компенсировать пусть даже большие, но кратковременные отклонения тактовой частоты. Однако эластичная память не справляется при продолжительных, пусть даже небольших отклонения. Она может переполняться или опустошаться в зависимости от соотношения тактовых частот. При этом возникает так называемое проскальзывание. Рекомендацией ITU-T G.822 нормируется частота проскальзований в зависимости от качества обслуживания и устанавливается распределение продолжительности работы с пониженным и неудовлетворительным качеством. Таким образом рекомендацией ITU-T допускаются на синхронных цифровых сетях некоторые нарушения синхронизации. Рекомендация ITU-T G.803 описывает следующие режимы цифровых сетей по синхронизации: · синхронный режим, при котором проскальзования практически отсутствуют, имея случайный характер. Этот режим работы сетей с принудительной синхронизацией, когда все элементы сети получают тактовую частоту от одного эталонного генератора. · псевдосинхронный режим возникает, когда имеется несколько высокостабильных генератора (их нестабильность не более 10-11 согласно G.811). Допускается одно проскальзование за 70 суток. Этот режим имеет место на стыках сетей с синхронными режимами разных операторов. · плезиохронный режим появляется на цифровой сети при потери элементом сети внешней принудительной синхронизации. На сети с синхронным режимом такое может произойти при отказе основных и резервных путей прохождения синхросигнала или при выходе из строя эталонного генератора. Для обеспечения в этом случае приемлемого уровня проскальзования, 1 проскальзование за 17 часов, генераторы элементов сети должны обладать нестабильностью не более 10-9. · асинхронный режим характеризуется одним проскальзованием за 7 секунд позволяет иметь генераторы с нестабильностью не хуже 10-5. Подобный режим практически не применяется на цифровых сетях. В настоящее время все системы цифровой передачи, применяемые на цифровых сетях, принято разделять на системы PDH (Plesiochronous Digital Hierarchy - плезиохронная цифровая иерархия) и SDH (Synchronous Digital Hierarchy - синхронная цифровая иерархия). Своими названиями они обязаны соответствующим режимам работы по синхронизации. В данной статье подробно рассмотрим PDH, принципам SDH посвящена отдельная статья. Плезиохронная цифровая иерархия Первыми возникли системы PDH, их основой стали системы с временным разделением каналов (ВРК) и ИКМ-кодированием. В силу исторических причин появилось два типа плезиохронной иерархии - североамериканская, используемая в основном в США, Канаде и Японии, и европейская, применяемая в большинстве стран. Базовой скоростью или нулевым уровнем в обоих типах иерархии (PDH и SDH) является скорость 64 кбит/с, под которой понимается один стандартный телефонных канал. Следующей ступенькой в плезиохронных иерархиях являются первичные цифровые системы передачи. Рекомендация ITU-T G.732 описывает европейскую системы (ИКМ30), а G.733 – североамериканскую (ИКМ24). Кадр или цикл системы ИКМ30 имеет продолжительность 125 мкс и состоит из 32 байт, каждый из которых относится к определенному каналу системы. Рис 1.1) Структура цикла. На рисунке приводится структура цикла. Нулевой канал предназначен для передачи служебных сигналов и сигналов синхронизации. Каналы с 1 по 15 и с 17 по 31 является информационными или телефонными. В каждом цикле передается 32 * 8 = 256 бит, что в итоге дает скорость 2048 кбит/с. Канал под номером 16 называется каналом сигнализации и может использоваться в двух вариантах: · для передачи сигнальной информации для телефонных каналов. В этом случае в каждом цикле байт канала сигнализации разбивается на две половины. В первой половине последовательно на протяжении 15 циклов передается сигнальная информация с 1 по 15 телефонного канала, во второй - с 16 по 31 канала. В нулевом цикле в канале сигнализации передается сигнал сверхцикловой синхронизации. Таким образом, через канал сигнализации обеспечивается передача сигнальной информации для каждого телефонного канала со скоростью 2 кбит/с. · канал сигнализации системы ИКМ30 может быть использован для обеспечения передачи сигнализации по общему каналу, например, ОКС №7, или для передачи данных. Поясним некоторые обозначения на рисунке. Во всех служебных байтах бит, обозначенный символом “Х” зарезервирован для международного использования. Биты “Y” зарезервированы для национального применения. Бит “Z” служит для сигнализации о сбоях в сверхцикловой синхронизации. Бит “А” используется для сигнализации о наличии важных сообщениях. Этот сигнал возникает (бит принимает значение “1”) в следующих случаях: · сбой по электропитанию; · сбой цикловой синхронизации; · сбой аппаратуры линейного кодирования; · наличие ошибок во входящем сигнале 2,048 Мбит/с; · частота появления серийных ошибок цикловой синхронизации превышает величину 10-3. Цикл ИКМ24 так же имеет продолжительность 125 мкс, но состоит из 24 байт и одного дополнительного бита. Каждый байт относится к определенному каналу системы. Рис. 1.2. Структура цикла. На рисунке приводится структура цикла. За один цикл передается 24 * 8 + 1 = 193 бита, что дает скорость 1544 кбит/с. Цикловая и сверхцикловая синхронизация обеспечивается определенной комбинацией добавочного бита, при подсчете за 12 циклов. Сигнальная информация телефонных каналов передается по двум подканалам А и В, образуемых младшими битами всех каналов соответственно в 6 и 12 циклах. Эти каналы обеспечивают передачу сигнализации каждого телефонного канала со скоростью 1,333 кбит/с. Отсутствие отдельного сигнального канала, по сравнению с европейской иерархией, позволяет более эффективно использовать пропускную способность. Однако происходит небольшое уменьшение канальной скорости. В силу кратности цикла формирования сигнальных каналов, равной 6, уменьшение скорости “плавает” между каналами, что практически не влияет на качестве речи, но не позволяет осуществлять одновременно передачу данных по отдельным каналам ИКМ24. Благодаря цикловой и сверхцикловой синхронизации поддерживаются требования плезиохронного режима работы в первичных цифровых системах. Для синхронизации ведомых генераторов в европейской иерархии используется тактовая частота 2048 кгц, выделяемая из цифрового потока со скоростью 2048 кбит/с. Последующие ступеньки североамериканской и европейской плезиохрон-ных цифровых иерархий базируются на своих первичных цифровых системах. В таблицах представлено соотношение числа каналов и скоростей. Таб. 1.1. Европейская плезиохронная цифровая иерархия

Таб 1.2. Североамериканская плезиохронная цифровая иерархия

В отличие от европейской, североамериканская плезиохронная цифровая иерархия имеет ряд вариаций, которые не были стандартизованы ITU-T. Используется еще один сигнал DS1C со скоростью 3 152 кбит/с (Т1С), обеспечивающий 48 телефонных каналов. В Японии вместо скорости 44 736 кбит/с используется 32 064 кбит/с (480 каналов), а вместо 274 176 кбит/с - 97 728 кбит/с (1 440 каналов). Как видно из таблиц в североамериканской иерархии сигналам присвоены названия DS, которое расшифровывается очень просто - цифровой сигнал (Digital Signal). Очень часто для обозначения скорости цифровых сигналов используются цифро-буквенные комбинации, которые приведены в таблицах. Первичный цифровой поток формируется за счет по-байтного объединения каналов. На следующих уровнях объединение происходит на основе по-битного мультиплексирования первичных потоков. В силу плезиохронного характера первичных потоков при их объединении неизбежны проскальзования. Для снижения вероятности их появления используют процедуру согласования или выравнивания скоростей (стаффинг). Суть ее заключается в добавлении на передающем конце “пустых” битов и исключения их на приемном. Это процедура положительного стаффинга. Возможность вставки дополнительных битов предоставляется использованием несколько большей скорости объединенного потока, чем у суммы исходных. Разумеется кроме дополнительных битов еще передаются служебные сигналы и сигналы цикловой синхронизации.

Главными недостатками плезиохронной цифровой иерархии (PDH) являются невозможность прямого доступа к каналам, без процедур демультиплексирования/мультиплексирования всего линейного сигнала, и практическое отсутствие средств сетевого мониторинга и управления. Потребность в более высоких скоростях работы цифровых систем передачи, повышение требований к качеству привели к созданию систем синхронной цифровой иерархии (SDH).

1.3.1) Вторичная цифровая система передачи ИКМ120

Вторичной ЦСП с ИКМ, отвечающей рекомендациям МККТТ по европейской иерархии, является серийная система ИКМ-120. Она предназначена для организации каналов на местных и зоновых участках первичной сети по кабелям типов ЗКНАП и МКС. Основным узлом системы ИКМ-120 является устройство образования типового вторичного цифрового потока со скоростью передачи 8448 кбит/с из четырех первичных со скоростями передачи 2048 кбит/с (рис 1.3) При использовании четырех комплектов АЦО-30 первичной ЦСП можно получить 120 каналов ТЧ, при этом, как и в первичных ЦСП, сохраняются все варианты организации вместо каналов ТЧ каналов ПДИ, ЗВ и т. д.

1.3. Структура ЦСП ИКМ-120

Рис. 1.4. Временной спектр ЦСП ИКМ-120

Таблица 1.3. Временной спектр ЦСП ИКМ-120.

Линейный тракт организуется по двухкабельной схеме, но на местных участках сети допускается и однокабельная. Номинальная схема кабельного участка l уч =5 км, максимальная длина секции дистанционного питания l дптах = 200 км. Максимальная длина переприемного участка ТЧ L max = 600км, что соответствует и максимальной протяженности зонового участка первичной сети.

Цифровой поток в точке сетевого стыка СС 2 между ВВГ и ОЛТ системы ИКМ-120 имеет параметры, соответствующие рекомендациям МККТТ, и потому может использоваться для организации связи посредством типовой аппаратуры по РРЛ и ВОЛС.

Вторичный цифровой поток разделяется на циклы длительностью Т ц = 125мкс, состоящие из 1056 разрядных интервалов. Цикл подразделяется на четыре одинаковых по длительности субцикла (рис. 1.4.). Первые восемь позиций I субцикла заняты синхросигналом объединенного потока (111001100), а остальные 256 позиций (с 9-й по 264-ю включительно) - информацией посимвольно объединенных исходных (четырех) потоков. На рисунке на соответствующих позициях отмечены номера символов исходных потоков. Первые четыре позиции II cубцикла заняты первыми символами команд согласования скоростей (КСС), а следующие четыре позиции - сигналами СС. Вторые и третьи символы КСС (команда положительного согласования имеет вид 111,а отрицательного - 000) занимают первые четыре позиции III и IV субциклов.

Распределение символов КСС позволяет защитить команды от воздействия пакетов импульсных помех. Позиции 5,...,8 субцикла III используются для передачи сигналов ДИ (две позиции), аварийных сигналов (одна позиция) и вызова служебной связи (одна позиция). В IV субцикле на позициях 5,..., 8 передаётся информация объединяемых потоков при отрицательном согласовании скоростей. При положительном согласовании скоростей исключается передача информации на позициях 9,..., 12 IV субцикла. Таким образом, общее число информационных символов в цикле 1024+4. Поскольку операция согласования скоростей производится не чаще чем через 78 циклов, позиции 5,...,8 субцикла IV занимаются очень редко, и поэтому их используют для передачи информации о промежуточных значениях и характере изменения скоростей объединяемых потоков.

Телекоммуникация – связь на расстоянии (лат.)

Коммуникация (процессобмена информацией)является необходимым условием существования живых организмов, экологических сообществ и человеческого общества. Общественное развитие сопровождается развитием телекоммуникационных технологий. Особенно интенсивно телекоммуникационные технологии развиваются несколько последних десятилетий.

Телекоммуникациимогут быть могут быть определены как технологии, занимающиеся вопросами общения на расстоянии и это можно пояснить различными способами. Рис 8.2 показывает одно из возможных представлений различных секций телекоммуникаций.

Рис 8.2. Телекоммуникации: формы и виды

Телекоммуникации делятся на два вида: однонаправленные и двунаправленные. Однонаправленные, такие как массовые радиовещание и телевещание, предполагают передачу информации в одном направлении – от центра к абонентам. Двунаправленные поддерживают диалог между двумя абонентами.

Телекоммуникации используют механическиеи электрическиесредства, потому что исторически телекоммуникации развивались от механической до электрической формы, используя все более и более сложные электрические системы. Это - причина того, почему много традиционных операторов в телекоммуникациях типа национальной почты, телеграфных и телефонных компаний используют обе формы. Доля механических телекоммуникаций типа обычной почты и прессы (рассылки газет), как ожидают, уменьшится, тогда как доля электрических, особенно двунаправленных, увеличится и станет главной в будущем. Уже в наше время корпорации и пресса интересуются, прежде всего, электрическими телекоммуникациями (электросвязью) как возможностью выгодного бизнеса.

По краям рисунка 8.2. показаны телекоммуникационные службы, вначале механические: пресса (пересылка газет), почта; затем электрические: телеграф, телекс (абонентский телеграф), телефон, радио, телевидение, компьютерные сети, выделенные сети, кабельное телевидение и мобильный телефон.

Примерно в таком порядке и развивались исторически телекоммуникации.

Телекоммуникационная система – совокупность технических объектов, организационных мер и субъектов, реализующих процессы состоящих из: процессов соединения, процессов передачи и процессов доступа.

Для обмена информацией телекоммуникационные системы используют естественную или искусственную среду. Телекоммуникационные системы вместе со средой, которая используется для передачи образуют телекоммуникационные сети. Наиболее важными телекоммуникационными сетями являются (рис. 8.2.): почтовая связь; телефонная сеть общего пользования (ТФОП); мобильные телефонные сети; телеграфная сеть; интернет – глобальная сеть взаимодействия компьютерных сетей; сеть проводного радиовещания; сети кабельного телевидения; сети телевизионного и радио вещания; ведомственные сети связи, которые предоставляют услуги связи органам государственной службы, системы управления воздушным и морским движением, крупным производственным комплексам; глобальные сети спасения и безопасности.

Перечисленные выше телекоммуникационные системы, как правило, тесно взаимодействуют друг с другом и используют общие ресурсы для реализации связи. Для организации такого взаимодействия в каждом государстве и в глобальном масштабе действуют специальные органы, которые регулируют порядок использования общих ресурсов; определяют общие правила взаимодействия (протоколы) телекоммуникационных систем; разрабатывают перспективные телекоммуникационные технологии.

Для реализации связи на расстоянии телекоммуникационные системы используют: системы коммутации; системы передачи; системы доступа и управления каналами передачи.