Генераторы сигналов произвольной формы. Генератор сигналов произвольной формы Генераторы сигналов произвольной формы применение преимущества

Двухканальный виртуальный цифровой генератор сигналов произвольной формы представляет собой 12-разрядный цифровой прибор в стандартном конструктиве приборов серии «USB-лаборатория АКТАКОМ», и выдает сигнал произвольной формы или сигнал одной из стандартных форм (синусоидальная, прямоугольная, треугольная и некоторые другие) по двум каналам одновременно. Задание формы и параметров сигналов производится пользователем с помощью компьютера независимо для каждого из каналов. Прибор имеет общий для обоих каналов вход внешней синхронизации для запуска генерации по внешнему событию. Генератор сигналов также вырабатывает выходной сигнал для синхронизации запуска других приборов.

Технические характеристики генератора сигналов

Общие характеристики
Количество выходных каналов 2
Форма выходных сигналов произвольная или стандартная
Выбор формы для обоих каналов независимый
ЦАП 12 бит
Максимальное число точек на канал 128 К
Отключаемый фильтр нижних частот 15 МГц
Максимальная частота оцифровки 80 МГц
Полоса частот по уровню 1% 0...10 МГц
Максимальный уровень выходного сигнала от пика до пика:
без дополнительного усилителя
с дополнительным усилителем (только для АНР-3122)

±2,5 В на нагрузке 50 Ом
±20 В на нагрузке 50 Ом
Шаг изменения напряжения выходного сигнала не более 2,5 мВ; 10 мВ с усилителем
Пределы изменения сдвига сигнала по вертикали ±2,5 В
Длительность фронта прямоугольного сигнала не более 20 нс
Частота дискретизации выбирается от 2,44 кГц до 80 МГц
Погрешность не более 10 -6 от выходной частоты
Синхронизация
Выбор режимов синхронизации
перезапуск однократный или непрерывный
источник внешний или ручной (внутренний)
полярность по восходящему или по спадающему фронту
Входной сигнал внешней синхронизации
форма прямоугольный импульс
амплитуда ТТЛ-уровень
длительность не менее 25 нс
Выходной сигнал синхронизации
форма прямоугольный импульс
амплитуда ТТЛ-уровень на нагрузке 1 кОм
длительность не менее 25 нс
Мощностные и конструктивные параметры
Питание 220 В, 50 Гц, не более 20 Вт
Габаритные размеры 260x210x70 мм
Масса не более 2,0 кг
Относительная влажность не более 90% при температуре 25°С
Атмосферное давление от 495 до 795 мм рт. ст.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ AKTAKOM ARBITRARY GENERATOR

НАЗНАЧЕНИЕ:

Приложение AKTAKOM Arbitrary Generator предназначено для полнофункционального управления поддерживаемыми приборами, создания, редактирования и загрузки данных для генерации сигналов для двух каналов.

ВОЗМОЖНОСТИ:

Приложение обеспечивает обнаружение и составление списка доступных к работе модулей генераторов сигналов, подключённых к компьютеру локально (по интерфейсу USB) или через сеть Ethernet/Internet; инициализацию и тестирование выбранного экземпляра прибора.

Приложение обеспечивает управление всеми параметрами, доступными для настройки этого типа аппаратуры (см. описание поддерживаемых приборов) и запись данных, задающих форму сигнала, в память генератора сигналов. Данные формы сигнала могут задаваться пользователем графически, в виде математической формулы (есть встроенный калькулятор формул) или двоичной последовательности: выбраны из списка стандартных сигналов (синус, прямоугольник, треугольник, пила, вспышка, импульс) или быть загружены из ранее сохранённого файла независимо для каждого канала.

Также приложение позволяет задавать форму сигналов для двух каналов одновременно в виде параметрической кривой, т.е. в виде двухмерной фигуры Лиссажу (функция «Лазерное шоу»).

Приложение содержит встроенный модуль анализа для подготовленных к генерации сигналов. В функции модуля анализа входят:

  • виртуальный осциллограф (показывает форму генерируемых сигналов с учётом ограничений аппаратуры);
  • автоматическое измерение параметров импульса;
  • спектральный анализ сигналов;
  • функции вольтметра и измерителя сдвига фаз.

Приложение позволяет пользователю вручную настроить цвета элементов графика и толщину линий осциллограмм или загрузить эти настройки из ранее сохранённых файлов цветовых схем. Размер и расположение всех окон приложения также могут настраиваться пользователем. Все настройки программы могут быть записаны в файл конфигурации и затем загружены.

Минимальные требования к компьютеру

  • Порт USB 1.1;
  • Установленная операционная система Windows XP, Windows 7, Windows 8;
  • Видеосистема VGA (разрешение 640x480, 256 цветов), рекомендуется разрешение 800x600 или более, 24-битный цвет;
  • Для использования звуковых сообщений программы необходимы звуковая плата и аудиосистема;
  • Для использования всех возможностей программы мы рекомендуем использование процессора не менее Pentium II 400 и ОЗУ объёмом не менее 32 Мб.

Стандартная комплектация

** Полное руководство по эксплуатации в стандартной поставке не имеет физического носителя и может быть загружено сайта , после приобретения и регистрации прибора с указанием его серийного номера.

  • Программное обеспечение
    • AAG Aktakom Arbitrary Generator Программное обеспечение генератора сигналов произвольной формы
    • AUNLibUSB 1.2.6.0 Драйвер для виртуальных приборов USB лаборатории

Для загрузки программного обеспечения нажмите кнопку «Загрузить» или перейдите в раздел « » ->

Дополнительная комплектация

  • BNC кабель и
  • Программное обеспечение AHP-3121_SDK Полный комплект средств разработки ПО

Программное обеспечение в стандартной поставке не имеет физического носителя и может быть загружено на сайте в разделе « » после приобретения и регистрации прибора с указанием его серийного номера.

Для загрузки программного обеспечения нажмите кнопку «Загрузить» или перейдите в раздел « » -> « », затем авторизуйтесь, указав свой логин и пароль. Если Вы ранее не регистрировались на сайте , пройдите по ссылке «Зарегистрироваться» и укажите все необходимые данные.

В случае утраты программного обеспечения его загрузка осуществляется за дополнительную плату. Программное обеспечение может быть поставлено на физическом носителе (компакт-диске). Запись программного обеспечения на носитель (компакт-диск) и его доставка осуществляются за дополнительную плату.

Всем доброго времени суток!
Сегодня хочу представить вниманию читателей обзор генератора сигналов произвольной формы JDS6600.
Данная модель генератора способна выводить информацию на цветной TTF дисплей 2,4 inch, выдавать сигнал на два независимых канала частотой до 15 МГц синусоидальной, прямоугольной, треугольной формы и частотой до 6МГц сигналов CMOS/TTL логики, импульсов и сигналов произвольной формы с размахом от 0 до 20 Вольт, имеет вход для измерения частоты, периода, длительности, скважности. Прибор позволяет изменять фазу сигнала от 0 до 359,9 градусов с шагом в 0,1 градуса, смещать сигнал от -9,99 до + 9,99 Вольт (в зависимости от амплитуды сигнала). В памяти генератора прописаны 17 стандартных сигналов, а так же имеется возможность редактировать (создавать/рисовать) необходимую форму сигнала и записывать в 60 ячеек памяти.
Генератор много чего может и, как радиогубитель средней руки, вряд ли всем буду пользоваться.
В линейке генераторов JDS6600 пять модификаций прибора с диапазонами частот – 15 МГц, 30 МГц, 40 МГц, 50 МГц и 60 МГц. В обзоре младшая модель – 15 МГц.
За подробностями приглашаю под кат (много фото).
Начну, пожалуй, не с красивых картинок, а с фотографии, которая дает представление о настольном или полочном рабочем позиционировании генератора с указанием габаритных размеров и таблицы с характеристиками всей линейки генераторов серии JDS6600. Таблица взята из мануала.




Мануал на русском языке можно изучить и .
Габаритные размеры в мануале немно другие, но один-два миллиметра роли не играют.
Приехал прибор в неказистой коробке, которую почта/таможня слегка повредила, но к содержимому отнеслись с почтением – все цело и ничего не потеряли.


Комплект состоит из генератора, блока питания 5 Вольт 2 Ампера с заграничной вилкой, весьма приличного сетевого переходника, диска с ПО, кабеля для подключения к ПК и двух шнуров BNS-крокодилы. Генератор был замотан в пупырку, а все остальные составляющие упакованы в индивидуальные пакеты.

Подключение по USB в качестве источника питания тут не предполагается и потому БП с обычным штекером 2,1*5,5*10 мм. Но позже мы попробуем запитать генератор от другого БП, чтобы выяснить ток потребления на случай питания от Powerank.


Кабель USB тип A - USB тип B для подключения генератора к ПК длиной 1,55 метра.

Шнуры BNS-крокодилы длиной 1,1 метра, с гибкими проводами, припаянными к крокодилам.

Ну, и собственно, виновник обзора в разных ракурсах.
На передней панели расположились кнопка вкл/выкл, экран, ряд серых кнопок справа от него для управления параметрами сигнала, выбора режимов измерений и модуляции, кнопка WAVE выбора вида генерируемого сигнала, MOD активации режима модуляции, SYS системных установок, MEAS выбора режима измерений, стрелки выбора разряда значения частоты и т.д., кнопка ОК для подтверждения кучи всего и включения/отключения двух каналов, СН1/2 кнопки включения/выключения каждого канала, энкодер, измерительный вход и выходы двух каналов.
На тыльной стороне TTL коннектор, разъемы USB и питания, наклейка с наименованием модели и модификации 15М (15МГц), вентиляционные отверстия.


На боковых гранях кроме вентиляционных щелей ничего интересного. Верхняя крышка глухая.

Снизу четыре пластиковые черные ножки, к сожалению скользящие по столу, и откидывающаяся подставка для удобства.


Ножки потом, пожалуй, заменю нескользящими.
Вес генератора 542 грамма и большую часть видимо весит сам корпус.
Заглянем внутрь. Для этого откручиваем четыре длинных самореза снизу, отщелкиваем пластиковой картой переднюю панель, снимаем верхнюю часть корпуса и перед нами внутренний мир генератора.

Как и предполагал, места внутри предостаточно. Блок питания легко бы мог поместиться внутри корпуса, но видимо на его внешний вариант есть свои причины.
Платы соединены шлейфом, разъемы которого плотно сидят в гнездах.
Плата генератора чистая, будто и не пачкали флюсом.

При первом приближении на плате видим, что компонентов довольно много. Из выдающихся – чип мозговой деятельности фирмы Lattice, релюшки Omron, небольшой радиатор, логотип, наименование производителя и модели с ревизией – JDS6600Rev.11. Номер ревизии дает основание полагать, что производитель основательно занимается моделью, постоянно ее совершенствуя.

Заранее извиняюсь, что в этот раз не приведу даташиты на все ключевые элементы, но все их покажу ближе.
За мозговую деятельность отвечает программируемый чип
.

Остальное уберу под спойлер.











Чуть подробнее остановлюсь на компонентах скрытых под радиатором. Это пара высокоскоростных усилителей .

Радиатором их накрыли без термопасты, может и не критично, но при сборке ее добавил.
Плата управления вмещает куда меньше элементов. Следы флюса только в местах ручной пайки кнопки вкл/выкл, энкодера, шлейфа дисплея и разъема.


Кнопки тут вполне себе механические и должны служить долго.


Переходим к сути устройства.
Включение генератора сопровождается сообщением на экране о выборе языка – китайского или английского, процессе загрузки, модели, номере партии. Загрузка длится буквально 1-2 секунды.

Сразу после загрузки на экране появляется информация о предустановленных сигналах подаваемых на оба выхода генератора. Об активности выходов генератора свидетельствует надпись ON на экране и свечение зеленых светодиодов над разъемами выходов. Выключить оба выхода сразу можно нажатием кнопки ОК или по отдельности каждый канал кнопками СН1/2.
Информация о параметрах сигналов на каналах идентична для первого (верхнего) и второго (нижнего) каналов за исключением изображения формы сигнала.

В целом на освоение генератора уходит не так уж много времени, назначение и смысл кнопок интуитивно понятно. Описать словами так, чтобы было понятно читателям сложнее, чем пользоваться в реальности. Посему воспользуемся картинками из манула.
Еще раз о назначении органов управления, отображения информации.

Суть отображаемой информации и кнопок справа от экрана.

Назначение функциональных кнопок

После включения на двух выходах по умолчанию присутствует синусоидальный сигнал частотой 10 кГц, размахом 5 Вольт, заполнением 50%, смещением 0 Вольт и фазовым сдвигом между каналами 0 градусов. Серыми кнопками справа эти параметры меняются и рассказывать тут особо нечего. Выбрали нужный параметр, далее кнопками со стрелками выбрали разряд изменяемого параметра и энкодером меняем значение.
Наибольший интерес вызывают кнопки WAVE выбора вида генерируемого сигнала, MOD активации режима модуляции, SYS системных установок, MEAS выбора режима измерений.
При нажатии на кнопку WAVE на экране появляется следующее изображение и становится доступен выбор формы сигнала.

К серым кнопкам привязаны 4 основных сигнала (синусоида, меандр, импульс, треугольник) и произвольная форма, прописанная в первой ячейке памяти, зарезервированной для этого.
Гораздо большее количество сигналов можно выбрать, вращая ручку энкодера. Этот способ дает возможность выбрать:
17 предустановленных сигналов – Sine, Sguare, Pulse, Triangle, PartialSine, CMOS, DC, Half-Wave, Full-Wave, Pos-Ladder, Neg-Ladder, Noise, Exp-Rise, Exp-Decay, Multi-Tone, Sinc, Lorenz
и 15 произвольных сигналов Arbitrary. С завода эти 15 ячеек пустые, в них ничего не записано – на выходе 0 Вольт, 0 Герц. Их заполнение рассмотрим после установки ПО.
В мануале идет речь о амплитуде сигнала и ее регулировке от 0 до 20 Вольт. На самом деле о регулировке амплитуды можно говорить только для отдельных сигналов, в основном речь идет о размахе.

Синусоида размахом 5В (на генераторе ampl 5V, осциллограф показывает значение размаха, хоть и пишет про амплитуду).

Меандр 5В (на генераторе ampl 5V, осциллограф показывает значение размаха, но пишет про амплитуду).

Разницы между Sguare и Pulse на осциллограмме не заметил. Как был меандр, так и остается при переключении, поэтому скрин не выкладываю.
Исправлено благодаря
До тех пор не видно разницы пока не начнешь менять коэффициент заполнения DUTY. DUTY меняется только в Pulse, в режиме меандр Sguare коэффициент заполнения меняется только на экране генератора - на осциллограмме это никак не отражается.

Треугольный сигнал (на генераторе ampl 5V, осциллограф показывает значение размаха, но пишет про амплитуду).

Следующий сигнал Partial Sine – частичный синус, но разницы с Sineна осциллограмме так же не заметил и скрин не выкладываю.
Исправлено благодаря
Здесь ситуация, как и с сигналом Pulse, изменяем коэффициент заполнения и получаем изменения синусоиды. DUTY меняется только в Partial Sine, в режиме Sine коэффициент заполнения меняется только на экране генератора - на осциллограмме это никак не отражается.

Следующий сигнал CMOS.Здесь размах/амплитуда регулируется от 0,5 до 10 Вольт, несмотря на то что ручкой энкодера на экране выставляется до 20 Вольт.

Следующим идет сигнал DC, но на осциллограмме тишина.

Далее сигнал Half-Wave вот тут как раз мы видим амплитуду. Для сравнения на втором канале установил синусоиду. Хоть на генераторе указана амплитуда 5 вольт и осциллограф пишет ampl, но мы видим, что как раз измеряется размах синусоиды и амплитуда Half-Wave.

На Full-Wave так же видим измерение амплитуды и, при установленной частоте на генераторе 10 кГц, 20 кГц по осциллограмме.

Сигналы Pos-Ladder и Neg-Ladder задал на первом и втором каналах, соответственно. Снова видим размах.

Шумы на обоих каналах шумят независимо друг от друга с разными параметрами.

Снова для наглядности и экономии времени читателей сигналы Exp-Rise и Exp-Decay на разных каналах.

По той же схеме Multi-Tone и Sinc.

Сигналы Lorenz.

Следующая полезная функция прибора – функция измерения/счетчика. Прибор позволяет измерять сигнал частотой до 100 МГц. Активируется функция кнопкой Meas. Переключение между измерениями и счетчиком можно сделать тремя способами – кнопкой Funk, кнопками со стрелками и энкодером.

Кнопкой Coup выбираем открытый или закрытый вход, кнопкой Mode – частоту или периоды подсчета.
Обозреваемый JDS6600 позволяет измерять то, что он же и генерирует. Задаем параметры сигнала на выходе генератора и подключаем к измерительному входу.

Следующая функция модуляции. Активируется кнопкой MOD. Здесь доступны три режима: генератор качающейся частоты - Sweep Frequency, генератор импульсов – Pulse Generator и генератор пачки импульсов – Burst. Режимы выбираются кнопкой Func.
Свипирование возможно на двух каналах, но не одновременно - либо первый, либо второй.

Стрелками или энкодером выбираем канал, устанавливаем начальную и конечную частоту сигнала (форму сигнала выбираем заранее в режиме Wave), линейную или логарифмическую зависимость и включаем ON.
Логарифмическая.

Линейная

Режим Pulse Generator (только первый канал).


Режим генерации пачек импульсов Burst (первый канал).

Здесь можно задать количество импульсов в пачке от 1 до 1 048 575 и выбрать режимы
Две пачки импульсов

Сто пачек импульсов

471 пачка.

Обратите внимание на изменение Vmin, Vmax с ростом количества пачек. При малом их количестве импульсы имеют отрицательную полярность, дальше картина иная. Кто может объяснить, прошу прояснить в комментариях.
Исправлено благодаря , который указал на ошибку в выборе режима AC coupling на осциллографе. При изменении на DC все встало на свои места, за что прошу отметиться в qu1ck.

В режиме Burst четыре вида синхронизации (Как я понял. Если ошибаюсь поправьте) – от второго канала генератора – CH2 Trig, внешняя синхронизация – Ext.Trig (AC) и Ext.Trig (DC) и Manual Trig – ручная.
Следующая функциональная кнопка – это кнопка SYS, открывающая доступ к установкам генератора. Возможно следовало описать эту часть в начале, но двигался по наибольшей востребованности функций.

Кроме включения/отключения звуковых сигналов при нажатии кнопок, регулировки яркости экрана, выбора языка (китайский, английский) и сброса до заводских настроек, здесь можно поменять количество отображаемых/вызываемых ячеек произвольных сигналов (с завода 15, можно установить все 60), загрузить/записать 100 ячеек памяти и синхронизировать каналы по форме сигнала, частоте, амплитуде (размаху), заполнению, смещению.

Суть 60 ячеек и 100 ячеек станет понятна чуть позже, после подключения к ПК.
Для подключения генератора к компьютеру необходимо с диска из комплекта установить ПО.
Распаковав архив, сначала нужно установить драйвер CH340Q из папки h340 drive (архив Ch340.rar), далее установить программый драйвер VISA из папки VISA (установщик setup.exe), а уже потом установщик управляющей программы из папки English\JDS6600 application\Setup.exe
При подключенном к компьютеру генераторе и запуске программы необходимо выбрать виртуальный СОМ, куда подключен прибор и кликнуть кнопку Connect. Если порт выбран правильно, то увидим такую картинку.

Оболочка интерфейса представлена четырьмя вкладками – первая Configuration для соединения c ПК.
Вторая вкладка – Control Panel – панель управления генератором. Здесь все тоже самое, что и при управлении с лицевой панели прибора, но гораздо удобнее.

Все опции собраны на одном экране и привычные манипуляции мышью очень облегчают манипуляции с генератором. Кроме того, на этой вкладке одновременно с операциями над сигналами доступна синхронизация каналом, что с лицевой панели генератора нужно было делать через системные настройки генератора.
Далее вкладка Extend Function – аналог действиям кнопок MEAS и MOD на лицевой панели прибора, только на одном экране. Но есть и разница – не нашлось места в виртуальной среде для функции Pulse Generator в режиме Modulation Mode (MOD). С лицевой панели в режиме MOD доступны три функции – качения частоты, генератор импульсов и генератор пачек импульсов. С компьютера доступны только Sweep Frequency и Burst.

И последняя вкладка Arbitrary позволяет создавать свои формы сигналов и записывать их в изначально пустые ячейки памяти генератора (60 штук).

Можно начать с чистого листа, как на скрине выше, а можно взять за основу предустановленный сигнал (17 штук) и изголяться над ним, а потом записать в одну из 60 ячеек произвольных сигналов.

Для наглядности записал в ячейку памяти Arbitrary 01 такой сигнал.

И на осциллограмме видим следующее:

Здесь можно поменять амплитуду, смещение, фазу, но почему-то нельзя изменить коэффициент заполнения.
Вот теперь хочу вернуться к 60 и 100 ячейкам. Методом научного тыка и сравнений результатов вычислил, что кнопкой SYS на панели генератора можно открыть и сделать доступными до 60 ячеек произвольных сигналов (с завода 15), которые можно создать с помощью ПО и записать их в эти 60 ячеек.
Таким образом, становится доступны с панели генератора и вкладки Control Panel 17 стандартных и 60 произвольных сигналов.
Но, если и этот набор не достаточен, если какие-то сигналы Вами востребованы, а каких-то нет вообще (как, например, отсутствие прямой и обратной пил) и их нельзя создать с помощью ПО (например, из-за невозможности манипуляций с коэффициентом заполнения из программной оболочки), то новый сигнал можно создать с панели генератора, изменив любой параметр. Далее нужно в меню SYS выбрать номер ячейки от 00 до 99 (те самые 100) и кнопкой SAVE записать сигнал в эту ячейку. Теперь, когда он Вам понадобится, заходим в SYS, выбираем номер ячейки с этим сигналом и кнопкой LOAD загружаем его из памяти.
Т.е. по факту можно использовать 177 сигналов!!! 17 предустановленных + 60 произвольных + 100 загружаемых из памяти, когда это требуется.

В завершающей части обзора посмотрим, до каких частот генератор сохраняет приличные формы сигнала.
Синусоида 100 кГц 5В и 1 МГц 5В.

Синусоида 6 МГц 5В и 10 МГц 5В

Как видим, имеет место снижение размаха сигнала и оно не зависит от величины нагрузки. Без нагрузки вовсе, 1 кОм, 10 кОм, 47 кОм – снижение размаха есть всегда, но всегда в районе 0,5 Вольта.
В районе 13 МГц размах снижается на 0,7 вольт, но далее, при установленных 5 Вольтах размаха, падение не увеличивается.

Синусоида 15 МГц 10 Вольт – тут снижение размаха уже больше. Но это уже 15 МГц.

Дальше была выявлена особенность генератора JDS6600-15M – заявленная амплитуда в 20 Вольт, касается только сигналов (любой формы) частотой до 10 МГц. Ожидаемо амплитуда/размах ниже установленных значений. Щуп 1/10.

В диапазоне 10-15 МГц максимально возможная амплитуда/размах составляет 10 Вольт. Энкодером или в программе устанавливаем 20 Вольт (на экране генератора видим установленные 20 Вольт), потом частоту выше 10 МГц и показания амплитуды на экране прибора переключаются на 10 Вольт. Соответственно на выходе 10 Вольт. Такая особенность.

С формой синусоиды будто бы все в порядке, посмотрим меандр.
10 кГц 5В и 100 кГц 5В.

1МГц 5В и 6 Мгц 5 В.

6МГц 10В и 6 МГц 20В.
Здесь уже видно, что на высоких частотах меандр стремится к синусоиде, что присуще многим генераторам.

Треугольник 100 кГц 5В и 1 МГц 5В.

С повышением частоты и амплитуды форма сигнала начинает изменяться.
5 МГц 5В и 5 МГц 12В.

Формы сигналов на больших частотах далеки от идеальных, но к этому был готов. Опытным людям цена прибора многое скажет, для не искушенных пользователей материал изложил – надеюсь, он будет полезен. В описании генератора присутствует маркетинг и я, наверняка изложил, не все, что можно выжать из прибора, но основное показал. Возможно, старшие модели в линейке 6600 грешат меньше, но и стоят они дороже. Предоставленный экземпляр можно охарактеризовать как, генератор начального, бюджетного уровня для своего круга задач – ознакомление, обучение, радиолюбительство, быть может, какое-то не особо сложное и требовательное производство.
Из минусов отмечу снижение амплитуды/размаха сигнала с ростом частоты, отсутствие пил (но можно самому сгенерировать, изменив коэффициент заполнения и записав в ячейку).
Разработчику хотелось бы пожелать не увлекаться маркетингом, допилить чуть ПО.
Из плюсов все таки широкий фукнционал, возможность редактировать сигналы, записывать их в ячейки памяти, интуитивно понятное управление, два независимых канала.
В завершении замена штатного блока питания и измерение тока потребления.

Ток потребления не превышает одного Ампера и можно питать генератор от Power bank, обзаведясь соответствующим шнуром.
Если чего то не показал, то формулируйте подробный вопрос - генератор на столе, проведу опыт.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +17 Добавить в избранное Обзор понравился +43 +61

Генераторы сигналов произвольной формы - цифровые генераторы, основанные на применении памяти, со способностью передачи через цифро-аналоговый преобразователь любой формы сигнала, включая нарисованную от руки или восстановленную путем захвата реального сигнала с помощью цифрового осциллографа. При его возможностях и способностях генератор сигналов произвольной формы позволяет пользователю увеличивать или уменьшать амплитуду и частоту, повторять сигналы так частот как это необходимо или изменять сигналы различными способами. Основной чертой генератора сигналов произвольной формы является переменная частота дискретизации, что позволяет генерировать превосходно повторяемые выходные сигналы сложной формы (рис.1.3).

Рисунок 1.3 Схема генератора сигналов произвольной формы

Частота сигнала будет определяться по используемой частоте дискретизации и количества точек в таблице памяти по следующей формуле:

формула 1

Либо частота дискретизации, либо длина таблицы памяти, либо они вместе могут быть настроены для получения желаемой частоты выходного сигнала. Поэтому с генератора сигналов произвольной формы, любой сигнал повторяется точно, без наложений. Будучи основанным на использовании памяти, генератор сигналов произвольной формы дает возможность пользователю программировать свою память путем деления ее на сегменты данных и использовать каждый сегмент индивидуально.

Кроме того, генераторы сигналов произвольной формы обычно оснащены последовательным режимом, который позволяет связывать или повторять сегменты любым образом по выбору пользователя. Несколько расширенных режимов обеспечивают различные пути по формированию выходного сигнала: непрерывный, пошаговый, однократный, смешанный и т.д.

Рисунок 1.4 Воспроизведение сигнала с использованием сегментов: синус, меандр, треугольник, экспонента, шум, повторение сегмента меандра

Генераторы сигналов произвольной формы могут быть синхронизированы для обеспечения многоканальных решений (рис. 1.5). Однако, использование различных частот дискретизации в генераторах сигналов произвольной формы затрудняет реализацию стандартных видов модуляции и быстрой перестройки частоты выходного сигнала.

Рисунок 1.5 Мультигенераторная синхронизация

Описание аналогов

Для преобразования цифрового сигнала в аналоговый используют устройства под названием цифро-аналоговые преобразователи. Как правило, они существуют в виде отдельных микросхем, которые порой труднодоступны. Если к цифро-аналоговому преобразователю не предъявляются серьёзные требования, то его можно сделать самостоятельно из обычных резисторов. Называется такой ЦАП - R -2R. Своё название он получил из-за номиналов, применяемых в нём резисторов с сопротивлениями R и 2*R. Сопротивления могут быть любыми, но в разумных пределах. Если поставить очень большие, например, по несколько мегаом, то нагрузка, которая подключена к выходу, внесет существенные искажения в сигнал. Напряжение начнёт проседать. В данном аналоге взяты резисторы с сопротивлениями 1 КОм и 2 КОм.

Рисунок 1.5

На отладочной плате ЦАП выглядит так:


Рисунок 1.6 Матрица R-2R на печатной плате

Описание работы:

Каждый вход цифро-аналогового преобразователя имеет свой «вес». Входы расположены в порядке уменьшения веса слева направо. Таким образом, левый вход оказывает самое большое влияние на выходной сигнал, следующий за ним вдвое меньше и т.д. Самый последний вход изменяет выходной сигнал на маленькие милливольты. Если известна комбинация бит поступающая на вход цифро-аналогового преобразователя, то рассчитать напряжение очень легко. Предположим, что на входе у нас число 10010101 тогда выходное напряжение можно рассчитать по формуле:

Uвых = Uпит * (1 * 1/2 + 0 * 1/4 + 0 * 1 / 8 + 1 * 1 / 16 + 0 * 1 / 32 + 1 * 1

/ 64 + 0 * 1 / 128 + 1 * 1 / 256) Формула 2.

Согласно формуле 2 , напряжение на выходе будет равно 2.91 вольта. Uпит - напряжение питания микроконтроллера. При расчете использовалось значение 5 вольт. Таким образом, восьмибитный цифро-аналогового преобразователь способен выдать 256 различных напряжений с шагом около 20 милливольт, что вполне неплохо. Применение

Применений у данного цифро-аналогового преобразователя несколько. В особенности, генератор сигналов различной формы.

Формирование пилообразного сигнала:

Рисунок 1.7 Пилообразный сигнал

Формирование треугольного сигнала:

Рисунок 1.8 Треугольный сигнал

Формирование:

Рисунок 1.9 Произвольный сигнал

Преимущества и недостатки:

К преимуществам можно отнести:

Возможность увеличения разрядности;

Частота дискретизации;

Схемотехническая простота и повторяемость;

К недостаткам относятся:

Качество цифро-аналогового преобразователя сильно зависит от применяемых резисторов;

Сопротивление ключей порта микроконтроллера вносят искажения;

Большие габариты

Зачем нужны генераторы сигналов произвольной формы

При тестировании различных систем их разработчики должны исследовать поведение системы при подаче на ее вход как стандартных сигналов, так и сигналов, имеющих различные отклонения от нормы. В реальных условиях работы на систему могут действовать помехи, искажающие форму сигнала, и разработчику необходимо знать, как поведет себя устройство при тех или иных искажениях. Для этого ему необходимо либо моделировать помеху при прохождении стандартного сигнала, либо подать на вход искаженный сигнал, полученный при помощи генератора сигналов произвольной формы (ГСПФ). Первый путь гораздо длительнее и дороже, поэтому чаще всего используется второй путь.

Генераторы сигналов произвольной формы используются также в случаях, когда для отладки и испытания устройств нужно подавать на их вход сигналы нестандартной формы, получение которых без использования таких генераторов крайне затруднено.

Концепция построения ГСПФ

В основе построения ГСПФ лежит синтез аналогового сигнала по его образу, записанному в ОЗУ генератора. Типовая структура ГСПФ представлена на рис. 1.

Рис. 1. Типовая структура генератора сигналов произвольной формы

Генератор фазового угла (ГФУ) генерирует периодическую линейно нарастающую последовательность адресов ячеек ОЗУ (фазу сигнала). Крутизна нарастания последовательности зависит от частоты, задаваемой блоком управления (БУ).

В соответствии с изменением адресов на входе ОЗУ, меняются и данные на его выходе. Последовательность выдаваемых данных образует цифровой образ генерируемого сигнала. Он преобразуется в аналоговую форму при помощи цифро-аналогового преобразователя, затем сигнал ослабляется в соответствии с заданной амплитудой, и в него вводится нужное постоянное смещение. После усиления получается выходной сигнал нужной формы, частоты, амплитуды, с требуемым постоянным смещением.

Технические характеристики генератора

  • Частота генерируемого сигнала 0,0001…22000 Гц

  • Амплитуда выходного сигнала 0…10 В

  • Постоянное смещение выходного сигнала -5…+5 В

  • Выходной ток до 100 мА

  • Количество отсчетов на период 8192

  • Температурная относительная нестабильность частоты менее 10 -5 1/

    ° С
  • Долговременная относительная нестабильность частоты менее 10 -5 1/1000 ч

  • Точность установки частоты 7* 10 -6 Гц

  • Напряжение питания 10…12 В

  • Потребляемая без нагрузки мощность 0,9 Вт

  • Габаритные размеры платы генератора 125x100x15 мм

Структура комплекса ГСПФ

Программно-аппаратный комплекс генерации сигналов произвольной формы состоит из собственно генератора, подключаемого к ЭВМ через последовательный порт RS-232C, и программы управления генератором, работающей под Windows 95/98, Windows NT 4.0.

Структура аппаратной части генератора

Аппаратная часть выполнена в соответствии со структурой, приведенной на рис. 1. Единственное отличие состоит в том, что блок управления разработанного генератора подключен через блок сопряжения к ЭВМ. Из ЭВМ при помощи программы управления задаются форма и другие параметры сигнала.

Блок управления генератором построен на базе микроконтроллера AT89C52. Он принимает от ЭВМ команды изменения параметров сигнала и выдает соответствующие команды другим блокам генератора. Кроме того, генератор имеет SPI-подобный интерфейс для подключения управляющего устройства, отличного от ЭВМ. Наличие такого интерфейса позволит использовать генератор в составе мобильного компактного комплекса для снятия частотных характеристик, разработка которого ведется в настоящий момент.

Блок управления принимает и устанавливает частоту, смещение и амплитуду сигнала. Данные о форме выходного напряжения также проходят через блок управления. Стандартные формы (пила, меандр, белый шум и синусоида) рассчитываются непосредственно микроконтроллером.

Усилитель сигнала построен на малошумящем операционном усилителе MAX427 и позволяет получить выходной ток до 100 мА. ЦАП постоянного смещения AD7943 – умножающий 12-разрядный ЦАП с последовательным вводом данных, позволяющий получить смещение сигнала в диапазоне от –5 В до +5 В с дискретностью 2,44 мВ. ЦАП амплитуды AD7943 – умножающий 12-разрядный ЦАП с последовательным вводом данных. Позволяет задавать амплитуду выходного сигнала в диапазоне от 0 до 10 В с дискретностью 2,44 мВ. ЦАП MX565A – быстродействующий 12-разрядный ЦАП с параллельным вводом данных. Время установления с точностью до половины младшего разряда не более 250 нс. ОЗУ UM6264 содержит цифровой образ формы. Форма хранится в виде 8192 12-разрядных отсчетов. Это позволяет получить выходной сигнал достаточно высокого качества. Генератор фазового угла построен на основе ПЛИС EPF8282 фирмы ALTERA. Структура, записываемая в ПЛИС, приведена на рис. 2.


Рис. 2. Структурная схема конфигурации ПЛИС

Схема может работать в трех режимах:

В режиме нормальной генерации (на входе Mode единица) регистр приращения фазы (РПФ) загружается из БУ значением, соответствующим частоте.

При нормальной генерации содержимое РПФ суммируется с младшими разрядами регистра фазы (РФ), и сумма записывается в РФ по приходу SI . Тринадцать старших разрядов РФ подаются на адресные входы блока ОЗУ. Таким образом, частота переполнения РФ соответствует частоте генерируемого сигнала.

При ждущем режиме (на входе Mode ноль) ГФУ ожидает прихода стробирующего сигнала на вход Strob . По приходу этого сигнала генерируется сигнал с начальной фазы, записанной в регистре начальной фазы (РНФ), и до конца периода. После окончания периода ГФУ снова переходит в состояние ожидания строба.

При загрузке данных в ОЗУ они сначала последовательно записываются в регистр данных (РД), а затем, при подаче сигнала

InRAMOE , выставляются на входы данных блока ОЗУ. Это сделано для экономии числа используемых выводов микроконтроллера и упрощения топологии печатной платы.

Как видно из структуры ПЛИС, реализация такого операционного автомата на микросхемах малой степени интеграции потребовала бы большого количества разнотипных элементов (более 30 корпусов), что привело бы к увеличению габаритов и уменьшению надежности системы. Поэтому удобно применять ПЛИС.

Опытный образец генератора

Опытный образец был собран на двусторонней печатной плате размером 175

x 110 мм. Потребление опытного образца без нагрузки составляет 0.9 Вт.

Внешний вид опытного образца генератора приведен на рис. 3.

Рис. 3. Вид опытного образца платы генератора

Программа управления генератором