Частотное разделение связи. Частотное разделение сигналов. Временное разделение сигналов. Разделение сигналов по форме (кодовое) Разделение сигналов

В системах телемеханики для передачи многих сигналов по одной линии связи применение обычного кодирования показывается недостаточным. Необходимо либо дополнительное разделение сигналов, либо специальное кодирование, которое включает в себя элементы разделения сигналов. Разделение сигналов - обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при котором сигналы сохраняют свои свойства и не искажают друг друга.

Сейчас применяются следующие способы:

1. Временное разделение, при котором сигналы передаются последовательно во времени, поочередно используя одну и ту же полосу частот;

2. Кодово-адресное разделение, осуществляемое на базе временного (реже частотного) разделение сигналов с посылкой кода адреса;

3. Частотное разделение, при котором каждому из сигналов присваивается своя частота и сигналы передаются последовательно или параллельно во времени;

4. Частотно-временное разделение, позволяющее использовать преимущества как частотного, так и временного разделения сигналов;

5. Фазовое разделение, при котором сигналы отличаются друг от друга фазой.

Временное разделение (ВР). Каждому из n - сигналов линия предоставляется поочередно: сначала за промежуток времени t 1 передается сигнал 1, за t 2 - сигнал 2 и т.д. При этом каждый сигнал занимает свой временной интервал. Время, которое отводится для передачи всех сигналов, называется циклом. Полоса частот для передачи сигналов определяется самым коротким импульсом в кодовой комбинации. Между информационными временными интервалами необходимы защитные временные интервалы во избежание взаимного влияния канала на канал т.е. проходных искажений.

Для осуществления временного разделения используют распределители, один из которых устанавливают на пункте управления, а другой - на исполнительном пункте.

Кодово - адресное разделение сигналов (КАР). Используют временное кодово-адресное разделение сигналов (ВКАР), при этом сначала передается синхронизирующий импульс или кодовая комбинация (синхрокомбинация) для обеспечения согласованной работы распределителей на пункте управления и контролируемом пункте. Далее посылается кодовая комбинация, называемая кодом адреса. Первые символы кода адреса предназначены для выбора контролируемого пункта и объекта, последние образуют адрес функции, в котором указывается, какая ТМ - операция (функция) должна выполняться (ТУ, ТИ и т.п.). После этого следует кодовая комбинация самой операции, т.е. передается командная информация или принимается известительная информация.

Частотное разделение сигналов. Для каждого из n - сигналов выдается своя полоса в частотном диапазоне. На приемном пункте (КП) каждый из посланных сигналов выделяется сначала полосовым фильтром, затем подается на демодулятор, затем на исполнительные реле. Можно передавать сигналы последовательно или одновременно, т.е. параллельно.

Фазовое разделение сигналов. На одной частоте передается несколько сигналов в виде радиоимпульсов с различными начальными фазами. Для этого используется относительная или фазорастностная манипуляция.

Частотно-временное разделение сигналов. Заштрихованные квадраты с номерами - это сигналы, передаваемые в определенной полосе частот и в выделенном интервале времени. Между сигналами имеются защитные временные интервалы и полосы частот. Число образуемых сигналов при этом значительно увеличивается.

24. Основные виды помех в каналах и трактах проводных МСП(многоканальной системы передачи) с ЧРК(частотным разделением каналов).

Под помехой будем понимать всякое случайное воздействие на сигнал в канале связи, препятствующее правильному приему сигналов. При этом следует подчеркнуть случайный характер воздействия, так как борьба с регулярными помехами не представляет затруднений (во всяком случае, теоретически). Так например, фон переменного тока или помеха от определенной радиостанции могут быть устранены компенсацией или фильтрацией. В каналах связи действуют как аддитивные помехи, т. е. случайные процессы, налагающиеся на передаваемые сигналы, так и мультипликативные помехи, выражающиеся в случайных изменениях характеристик канала.

На выходе непрерывного канала всегда действуют гауссовские помехи. К таким помехам, в частности, относится тепловой шум. Эти помехи неустранимы. Модель непрерывного канала, вклю­чающая в себя закон композиции сигнала s(t), четырёхполюсник с импульсной характеристикой g(t, ) и источник аддитивных гауссовских помех (t).

Более полная модель должна учитывать другие типы аддитивных (аддитивные – суммарные) помех, нелинейные искажения сигнала, а также мультипликативные помехи.

Перейдем к краткой характеристике перечисленных выше помех.

Сосредоточенные по спектру, или гармонические, помехи представляют собой узкополосный модулированный сигнал. Причинами возникновения таких помех являются снижение переходного затухания между цепями кабеля, влияние радиостанций и т. п.

Импульсные помехи - это помехи, сосредоточенные по времени. Они представляют собой случайную последовательность импульсов, имеющих случайные амплитуды и следующих друг за другом через случайные интервалы времени, причем вызванные ими переходные процессы не перекрываются во времени. Причины появления этих помех: коммутационные шумы, наводки с высоковольтных линий, грозовые разряды и т. п. Нормирование импульсных помех в канале ТЧ производится путем ограничения времени превышения ими заданных порогов анализа.

Флуктуационная (случайная) помеха характеризуется широким спектром и максимальной энтропией, и поэтому с ней труднее всего бороться. Однако в проводных каналах связи уровень флуктуационных по­мех достаточно мал и они при малой удельной скорости передачи информации практически не влияют на коэффициент ошибок.

Мультипликативные (умножения на сигнал) помехи обусловлены случайными изменениями параметров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала на выходе демодулятора. Различают плавные и скачкообразные изменения уровня. Плав­ные изменения происходят за время, которое намного больше, чем 0 – длительность единичного элемента; скачкообразные - за время, меньшее 0 . Причиной плавных изменений уровня могут быть колебания затухания линии связи, вызванные, например, изменением состояния погоды, а в радиоканалах - замирания. Причиной скачкообразных изменений уровня могут быть плохие контакты в аппаратуре, несовершенство эксплуатации аппаратуры связи, технологии измерений и др.

Снижение уровня более, чем 17,4 дБ ниже номинального, на­зывается перерывом. При перерыве уровень падает ниже порога чувствительности приемника и прием сигналов фактически прекращается. Перерывы длительностью меньше 300 мс принято называть кратковременными, больше 300 мс - длительными.

Импульсные помехи и перерывы являются основной причиной появления ошибок при передаче дискретных сообщений по про­водным каналам связи.

Аддитивные помехи содержат три составляющие: сосредоточенную по частоте (гармоническую), сосредоточенную во времени (импульсную) и флуктуационную. Помеха, сосредоточенная по частоте, имеет спектр значительно уже полосы пропускания канала. Импульсная помеха представляет собой последовательность кратковременных импульсов, разделенных интервалами, превышающими время переходных процессов в ка­нале. Флуктуационную помеху можно представить как последовательность непрерывно следующих один за другим импульсов, имеющую широкий спектр, выходящий за пределы полосы пропускания канала. Импульсную помеху можно рассматривать как крайний случай флуктуационной, когда её энергия сосредоточена в отдельных точках временной оси, а гармоническую помеху - как другой крайний случай, когда вся энергия сосредоточена в отдельных точках частотной оси.

Характеристиками аддитивных помех в каналах ТЧ являются псофометрическая мощность шума и уровень не взвешенного шума. Первая величина измеряется прибором с квадратичным детектором и специальным контуром, учитывающим чувствительность человеческого уха, микрофона и телефона к напряжениям различных частот. Средняя величина псофометрической мощности составляет 2*10-15 Вт/м. Не взвешенный шум измеряют прибором с квадратичным детектором, имеющим время интегрирования 200 мс. Эта величина в точке с относительным нулевым уровнем не должна превышать -49 дБ на одном участке переприёма. Указанные характеристики не охватывают импульсные шумы, которые измеряют отдельно и специальными приборами. Мультипликативные помехи в каналах связи выражаются в основном в изменении остаточного затухания, приводящего к изменениям уровня сигнала. Изменения уровня сигнала в реальных каналах связи весьма разнообразны по своему характеру. Так, например, различают плавные и скачкообразные изменения уровня сигнала (иногда их называют изменениями остаточного затухания), кратковременные занижения уровня, кратковременные и длительные перерывы.

Плавными изменениями уровня называют такие, при которых отклонение уровня от своего номинального значения до максимального (минимального) происходит за время, несоизмеримо большее длительности единичных элементов передаваемого сигнала т0. К скачкообразным изменениям уровня относятся те, при которых изменение уровня от значения рН0М до рМАКС происходит за время, соизмеримое с временем единичного интервала 0.

Исследования показали, что за длительный промежуток времени отклонения уровня от номинального значения происходят как в сторону повышения, так и в сторону понижения, при этом оба направления изменения имеют примерно равную вероятность. Изменения такого рода могут быть отнесены к числу медленных изменений остаточного затухания. Наряду с ними имеют место быстрые, сравнительно кратковременные изменения остаточного затухания, в основном приводящие к уменьшению уровня приема. Значительные занижения уровня сигнала приводят к искажениям принимаемых сигналов и, как следствие, к ошибкам. Занижения уровня сигнала уменьшают его помехозащищенность, что также вызывает рост числа ошибок. И, наконец, в синхронных системах снижение уровня сигнала приводит к нарушению работы синхронизации и затрате определенного времени на вхождение, в режим синхронизации при восстановлении нормального уровня. Поэтому в современных системах ПДИ имеются специальные устройства, которые блокируют приемник и его систему синхронизации при уменьшении уровня сигнала ниже заданного значения - П. По этой причине занижение уровня на величину, большую или равную П, получило название перерыва. При передаче данных согласно рекомендациям ЕАСС перерывом считают П= 17,4 дБ. Перерывы делят на кратковременные и длительные

Для коммутируемых каналов ТЧ существует следующая нор­ма: t КР.ПЕР ЗОО мс. Это время выбрано из принятых в аппаратуре телефонной коммутации схемных решений, которые в случае перерыва длительностью более 300 мс обеспечивают разъединение ранее установленного соединения, т. е. приводят к отказу связи. Указанная величина рекомендуется МСЭ в качестве критерия отказа для передачи по коммутируемым каналам ТЧ. Рекомендуемая доля кратковременных перерывов на одном переприемном участке не должна превышать 1,5*10-5 за 90% часовых отрезков времени.

Плавные изменения уровня до некоторой степени характеризуются величиной стабильности остаточного затухания. Согласно рекомендациям МСЭ остаточное затухание для двухпроводного канала ТЧ должно составлять 7,0, для четырёхпроводного - 17,4 дБ, а его нестабильность во времени на одном участке переприёма - не превышать 1,75 дБ.

В каналах связи возникают также своеобразные мультипликативные помехи, связанные с нестабильностью генераторов поднесущих частот аппаратуры передачи. В результате затрудняется выделение на приёме когерентного колебания при ФМ или возникают искажения сигнала ЧМ. По существующим нормам расхождение поднесущих частот на участке переприёма ограничивается величиной 1 Гц. Кроме того, наряду со скачкообразными изменениями уровня сигнала в каналах связи имеют место скачки фазы, однако последние пока не нормированы.

25.Принципы построения СП (систем передачи) с временным разделением каналов (ВРК). Основные этапы преобразования аналоговых сигналов в цифровые (дискретизация по времени, квантование по уровню, кодирование).

В системах передачи с ВРК используются цифровые сигналы, представляющие собой ту или иную импульсную кодовую последовательность, т.е. это система для передачи цифровых данных. Напомним, что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ, КВАНТОВАНИЕ, КОДИРОВАНИЕ. Дискретизация осуществляется на основе теоремы Котельникова. Для сигналов ТЧ с полосой 0,3 – 3,4 кГц + 0,9 кГц (защитный интервал), т.е. fв = 4 кГц. Тактовая частота дискретизации fт = 2fв = 8 кГц. Каждый отсчёт передаётся 8 битами, значит сигнал ТЧ можно передавать со скоростью fт × 8 бит = 8×103 ×8 = 64 кбит/с. Это и есть скорость передачи одного канала ТЧ. Отсчёты передаются в виде восьмиразрядных двоичных чисел, получаемых при квантовании отсчётов. Т.к. квантование имеет конечное число уровней, да ещё ограничения по max и min, то очевидно, что квантованный сигнал не является точным. Разница между истинным значением отсчёта и его квантованным значением – это шум квантования. Значение шума квантования зависит от количества уровней квантования, скорости изменения сигнала и от спосрба выбора шага квантования.

При передаче сигналов от нескольких источников сообщений возникает необходимость разделения этих сигналов с тем, чтобы на приемной стороне можно было определить, к какому источнику сообщений относится каждый сигнал и направить его к своему приемнику. Аналогичная задача имеет место при передаче элементов кодового сигнала. В телемеханике применяются три основных способа разделения сигналов или их элементов: кондуктивное (схемное), временное и частотное .

При кондуктивном разделении для каждого сообщения (или элемента кодового сигнала) отводится независимая электрическая цепь связи. По каждой электрической цепи можно осуществлять независимую и параллельную передачу сообщений. Рассмотрим систему с кондуктивным разделением, в которой используются полярные признаки тока для передачи сообщений (рис. 2.9). Посылка сигналов каждого источника сообщений осуществляется двухпозиционными ключами зависимости от положения которых в линейных проводах устанавливается то или иное направление постоянного тока. Приемниками служат поляризованные электромагнитные реле. Передача информации от каждого источника сообщений осуществляется по своему проводу, обратный провод - общий для всех каналов. Крайне неэкономичное использование линий связи практически исключает применение этого способа разделения в телемеханике при длинах линий связи свыше 3-5 км. Реально кондуктивный способ разделения сигналов используется в системах с дистанционным управлением.

Рис. 2.9. Схема кондуктивного разделения сигналов

При временном разделении (уплотнении) сигналов каждому из источников сообщения поочередно предоставляется линия связи: за интервал времени t1передается сигнал первого источника, за интервал времени t2 - второго и т. д. (на рис. 2.10,а показана передача от пяти источников). Из этого рисунка следует, что при временном разделении сигнал от каждого источника занимает свой временной интервал, не занятый сигналом от другого источника. Время, которое отводится для передачи сигналов от всех источников, называется циклом.

Рис.2.10. Пояснение временного разделения сигналов

а) разделение каналов на временной оси.

в) реализация способа синхронизации с помощью сети

Для реализации временного способа предающие и приемные узлы устройств телемеханики поочередно подключаются к линии связи с помощью синфазно работающих коммутирующих устройств (распределителей), которые в настоящее время выполняются на бесконтактных элементах. Для большей наглядности на рис. 2.10,б показана система телемеханики с временным разделением сигналов, в которой применяются контактные распределители - шаговые искатели (ШИ). При передаче информации используются полярные качества тока. Сообщения от каждого источника определяется положением ключей управления, в качестве декодирующих устройств на приемной стороне использованы поляризованные. За один цикл работы распреде­лителей последовательно во времени передаются сообщения от всех источников информации. Устройства с временным разделением сигналов могут работать в циклическом или спорадическом режиме. В циклическом режиме системы работают непрерывно, в спорадическом информация передается по мере ее накопления или необходимости, в остальное время распределители находятся в исходном состоянии и не осуществляют переключений каналов.

Основным условием надежного и точного разделения сигналов является строгая синфазность распределителей. Для этого в циклических системах используют три основных метода синхронизации: общей сетью, циклический и пошаговый.

При синхронизации общей сетью (рис. 2.10,в) питание приводов распределителей (ПР) осуществляется от общей электрической сети 50 Гц, называемой источником синхронного питания. В качестве такого источника часто используют сеть одной энергетической системы. Этот метод может использоваться при относительно коротких (до 20 км) линиях связи (ЛС). В данных линиях из-за изменения нагрузок, подключаемых к энергетической системе, во времени возможно нарушение синфазности питания и, следовательно, синфазности работы распределителей.

При циклической синхронизации приводы распределителей, расположенные на передающей и приемной стороне, подключены к специальным генераторам импульсов управления, настроенных на одинаковую частоту. Однако даже при точной взаимной настройке генераторов рассогласование положения распределителей будет накапливаться со временем. Для устранения рассогласования один раз за цикл производится принудительное синфазирование распределителей установкой их в начальное положение.

При пошаговой синхронизации на передающей стороне используется генератор импульсов, который осуществляет переключение обоих распределителей. На каждом шаге распределителей необходимо передавать специальные синхронизирующие импульсы.

При спорадическом режиме работы телемеханической системы используют стартстопную синхронизацию, которую можно рассматривать как модификацию циклической.

При частотном разделении (уплотнении) каждому источнику сообщений выделяется определенная полоса частот: первому источнику- полоса частот ∆F 1 ,второму - ∆F 2 и т. д. (рисю 2.11, а). Полосы частот, используемые для передачи различных сообщений, не перекрываются. При этом сигналы от всех источников сообщений передаются по линии связи одновременно. На рис. 2.11,б представлена структурная схема системы с частотным разделением для передачи двоичных сигналов. Сообщение от каждого источника передается по линии синусоидальными сигналами определенной частоты f создаваемыми генераторами Г. Отсутствие посылки колебаний соответствующей частоты означает 0, посылка колебаний - 1. Колебания суммируются в линии связи. Разделение посылок от источников сообщений осуществляется на приемной стороне полосовыми фильтрами ПФ", выходы которых через выпрямители В соединяются с исполнительными реле Р.


Рис.2.11. Пояснения к частотному методу разделения сигналов

а) расположение каналов на частотной оси

б) функциональная схема системы

Литература

1. Стрыгин В.В. «Основы автоматики и вычислительной техники». М. Высшая школа. 1977 г.

2. Грицевский П.М. и др. «Основы автоматики, импульсной и вычислительной техники». М. Радио и связь. 1987 г.

3. Чекваскин А.Н. и др. «Основы автоматики». М. Энергия. 1977 г.

4. Гордин В.С. и др. «Основы авиационной автоматики». М. Оборонизд. 1972 г.

5. Аскерко В.С. и др. «Основы авиационной автоматики». М. Оборонизд. 1972 г.

6. Шишмарев В. Ю. «Типовые элементы систем автоматического управления». 4-е издание М.: Издательский центр «Академия», 2009.

7. Келим. Ю. М. Типовые элементы систем автоматического управления. М.:ФОРУМ:ИНФРА-М, 2002.г.

1. Тема 1.1. Основные понятия автоматики………………………………….…3

2. Тема 1.2. Измерительные преобразователи (датчики)………………………9

3. Тема 1.3. Электрические реле………………………………………………..28

4. Тема 1.4. Магнитные усилители……………………………………………..32

5. Тема 1.5.Типовые динамические звенья систем автоматики……………....39

6. Тема 1.6. Устойчивость и качество автоматической системы……………..43

7. Тема 2.1. Системы дистанционной передачи угловых перемещений на переменном токе………………………………………………………….…..48

8. Тема 2.2.Следящие системы переменного тока………………………….....51

9. Тема 2.3.Телемеханические системы автоматического управления и контроля……………………………………………………………………….53

Частотное разделение сигналов. Функциональная схема простейшей системы многоканальной связи с разделением каналов по частоте представлена на рис. 9.2.

Проследим основные этапы образования сигналов, а также изменение этих сигналов в процессе передачи. Сначала в соответствии с передаваемыми сообщениями первичные (индивидуальные) сигналы, имеющие энергетические спектры G 1 (ω), G 2 (ω),..., G N (ω) модулируют поднесущие частоты со& каждого канала. Эту операцию выполняют модуляторы М 1 , M 2 , ..... , M N канальных передатчиков. Полученные на выходе частотных фильтров Φ 1 , Φ 2 , ..., Φ N спектры g k (ω) канальных сигналов занимают соответственно полосы частот Δω 1 , Δω 2 ,..., Δω N (рис. 9.3), которые в общем случае могут отличаться по ширине от спектров сообщений Ω 1 , Ω 2 ,..., Ω N . При широкополосных видах модуляции, например ЧМ, ширина спектра Δω k ≈2(β + 1)Ω k , при ОМ Δω k = Ω k , т. е. в общем случае Δω k ≥ Ω k Для упрощения будем считать, что используется ОМ (как это принято в кабельных системах многоканальной связи с частотным разделением), т. е.

Δω k = Ω и Δω = NΩ. (9.11)

Будем полагать, что спектры индивидуальных сигналов финитны. Тогда можно подобрать поднесущие частоты ω k так, что полосы Δω 1 ,..., Δω 1 попарно не перекрываются. При этом условии сигналы s k (t) (k = 1,..., N) взаимно-ортогональны. Затем спектры g 1 (ω), g 2 (ω),... ,g N (ω) суммируются (СУ) и их совокупность g(ω) поступает на групповой модулятор (М). Здесь спектр g(ω) с помощью колебания несущей частоты ω 0 переносится в область частот, отведенную для передачи данной группы каналов, т. е. групповой сигнал s(t) преобразуется в линейный сигнал s Л (t) При этом может использоваться любой вид модуляции.

На приемном конце линейный сигнал поступает на групповой демодулятор (приемник Π), который преобразует спектр линейного сигнала в спектр группового сигнала g(ω). Спектр группового сигнала затем с помощью частотных фильтров Φ 1 , Φ 2 ,..., Φ N вновь разделяется на отдельные полосы Δω k , соответствующие отдельным каналам. Наконец, канальные демодуляторы Д преобразуют спектры сигналов g k (ω) в спектры сообщений G k (ω), предназначенные получателям.

Из приведенных пояснений легко понять смысл частотного способа разделения каналов. Поскольку всякая реальная линия связи обладает ограниченной полосой пропускания, то при многоканальной передаче каждому отдельному каналу отводится определенная часть общей полосы пропускания.

На приемной стороне одновременно действуют сигналы всех каналов, различающиеся положением их частотных спектров на шкале частот. Чтобы без взаимных помех разделить такие сигналы, приемные устройства должны содержать частотные фильтры. Каждый из фильтров Φ л должен пропустить без ослабления лишь те частоты ω∈Δω k , которые принадлежат сигналу данного канала; частоты сигналов всех других каналов ω∉Δω k фильтр должен подавить.

Математически частотное разделение сигналов идеальными полосовыми фильтрами можно представить следующим образом:

где g k (t)-импульсная реакция идеального полосового фильтра, пропускающего без искажений полосу частот Δω k . Выражение (9.12) совпадает с (9.6) при весовой функции η k (t, τ) = g k (t-τ). В спектральной области преобразование (9.12) соответствует умножению спектра группового сигнала на Π-образную передаточную функцию (см. рис. 9.3).

Итак, с точки зрения возможности полного разделения сигналов различных каналов необходимо иметь такие фильтры Φ k , полоса пропускания которых полностью соответствует ширине спектра сигнала Δω k ; на гармонические составляющие за пределами полосы Δω k фильтр Φ k реагировать не должен. При этом имеется в виду, что энергия сигналов s k полностью сосредоточена в пределах ограниченной полосы Δω k , отведенной k-му каналу. Если бы оба эти условия удовлетворялись, то посредством частотных фильтров можно было бы разделить сигналы различных каналов без взаимных помех. Однако ни одно из этих условий принципиально невыполнимо. Результатом являются взаимные помехи между каналами. Они возникают как за счет неполного сосредоточения энергии сигнала k-го канала в пределах заданной полосы частот Δω k , так и за счет неидеальности реальных полосовых фильтров. В реальных условиях приходится учитывать также взаимные помехи нелинейного происхождения, например за счет нелинейности характеристик группового канала.

Для снижения переходных помех до допустимого уровня приходится вводить защитные частотные интервалы Δω защ (рис. 9.4). Так, например, в современных системах многоканальной телефонной связи каждому телефонному каналу выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых звуковых сигналов ограничивается полосой от 300 до 3400 Гц, т. е. ширина спектра составляет 3,1 кГц. Между полосами частот соседних каналов предусмотрены интервалы шириной по 0,9 кГц, предназначенные для снижения уровня взаимных помех при расфильтровке сигналов. Это означает, что в многоканальных системах связи с частотным разделением сигналов эффективно используется лишь около 80% полосы пропускания линии связи. Кроме того, необходимо обеспечить очень высокую степень линейности всего тракта группового сигнала.

Временное разделение сигналов. Принцип временного разделения сигналов весьма прост и издавна применяется в телеграфии. Он состоит в том, что с помощью коммутатора K пер групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы * . При передаче непрерывных сообщений для временного разделения используется дискретизация по времени (импульсная модуляция). Сначала передается сигнал (импульс) 1-го канала, затем следующего канала и т. д. до последнего канала за номером N, после чего опять включается 1-й канал и процесс периодически повторяется (рис. 9.5).

* (В современной аппаратуре механические коммутаторы практически не используют. Вместо них применяют электронные коммутаторы, выполненные, например, на регистрах сдвига. )

На приемном конце устанавливается аналогичный коммутатор K пр, который подключает групповой тракт поочередно к приемникам соответствующих каналов. Приемник каждого k-ro канала должен быть подключен только на время передачи k-ro сигнала и выключен все остальное время, пока передаются сигналы в других каналах. Это означает, что для нормальной работы многоканальной системы с временным разделением необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Часто для этого один из каналов занимают под передачу специальных импульсов синхронизации, предназначенных для согласованной во времени работы K пер и K пр.

На рис. 9.6 представлены временные диаграммы двухканальной системы с АИМ. Переносчиком сообщений здесь являются последовательности импульсов (с периодом T 0 = 1/2F max), поступающих на импульсный модулятор (ИМ) от генератора тактовых импульсов (ГТИ). Групповой сигнал (рис. 9.6,а) поступает на коммутатор K пр. Последний выполняет роль "временных" параметрических фильтров или ключей, передаточная функция которых K k (рис. 9.6,6) изменяется синхронно (с периодом Т 0) и синфазно с изменениями передаточной функции K пер:


Это означает, что к тракту передачи в пределах каждого временного интервала Δt k подключен только k-н импульсный детектор ИД-k. Полученные в результате детектирования s k (t) сообщения поступают к получателю сообщений ПС-k.

Оператор π k , описывающий работу ключевого фильтра, вырезает из сигнала s(t) интервалы Δt k следующие с периодом Т 0 и отбрасывает остальную часть сигнала. Легко убедиться, что его можно представить в форме (9.6), если

Здесь, как и ранее, Δt k обозначает интервал, в течение которого передаются сигналы k-го источника.

При временном разделении взаимные помехи в основном обусловлены двумя причинами. Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. Действительно, если при передаче модулированных импульсов конечной длительности ограничить спектр, то импульсы "расплывутся" и вместо импульсов конечной длительности получим процессы, бесконечно протяженные во времени. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов (рис. 9.7). Иначе говоря, между каналами возникают взаимные переходные помехи или межсимвольная интерференция. Кроме того, взаимные помехи могут возникать за счет несовершенства синхронизации тактовых импульсов на передающей и приемной сторонах.

Для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Так, в многоканальных системах телефонии полоса эффективно передаваемых частот F = 3100 Гц; в соответствии с теоремой Котельникова минимальное значение f 0 = 2F = 6200 Гц. Однако в реальных системах частоту следования импульсов выбирают с некоторым запасом: f 0 = 8 кГц. Для передачи таких импульсов в одноканальном режиме потребуется полоса частот не менее 4 кГц. При временном разделении каналов сигнал каждого канала занимает одинаковую полосу частот, определяемую в идеальных условиях согласно теореме Котельникова из соотношения (без учета канала синхронизации)

Δt k = T 0 /N = 1/(2F общ), (9.15)

где F общ = NF, что совпадает с общей полосой частот системы при частотном разделении. Хотя теоретически временное и частотное разделения позволяют получить одинаковую эффективность использования частотного спектра, тем не менее пока что системы временного (разделения уступают системам частотного разделения по этому показателю.

Вместе с тем, системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения. Кроме того, аппаратура временного разделения значительно проще, чем при частотном разделении, где для каждого индивидуального канала требуются соответствующие полосовые фильтры, которые трудно реализовать средствами микроэлектроники. Немаловажным преимуществом систем временного разделения является значительно меньший пик-фактор. Временное разделение широко используют при передаче непрерывных сообщений с аналоговой импульсной модуляцией, и особенно в цифровых системах ИКМ.

Заметим также, что суммарная мощность Р oбщ принимаемого сигнала s(t) необходимая для обеспечения заданной верности в присутствии флуктуационных помех, как при частотном, так и при временном разделениях (а также при других, рассматриваемых ниже системах с линейным разделением) в идеальном случае в N раз больше, чем мощность Р при одноканальной передаче с тем же видом модуляции Р oбщ = NР. Это легко понять, поскольку при сложении независимых сигналов их мощности складываются. В действительности из-за переходных помех верность приема в многоканальной системе при выполнении этого условия несколько ниже, чем в одноканальной. Увеличивая мощность сигнала в многоканальной системе, нельзя снизить воздействие переходных помех, поскольку при этом и мощность последних также возрастает, а в случае помех нелинейного происхождения растет даже быстрее, чем мощность сигнала.

Фазовое разделение сигналов. Рассмотрим теперь множество синусоидальных сигналов:


Здесь подлежащая передаче информация содержится в изменениях амплитуды A k (амплитудная модуляция), несущая частота сигналов ω 0 - одна и та же, а сигналы различаются начальными фазами φ k .

Среди множества N сигналов (9.16) лишь любые два сигнала являются линейно-независимыми; любые n>2 сигналов линейно-зависимы. Это означает, что на одной несущей частоте ω 0 при произвольных значениях амплитуд A i и A k и фаз φ i и φ k можно обеспечить лишь двухканальную передачу * .

* (Разделение сигналов при фиксированных значениях амплитуд A i и фаз φ i обсуждается в § 9.5. )

На практике преимущественно используют значение φ 2 - φ 1 = π/2:

s 1 (t) = A 1 sin ω 0 t; s 2 (t) = A 2 sin (ω 0 t+π/t) = A 2 cos ω 0 t, (9.17)

При этом сигналы s 1 (t) и s 2 (t) ортогональны, что облегчает реализацию системы и улучшает ее энергетические показатели.

Функциональная схема простейшей системы многоканальной связи с разделением каналов по частоте представлена на рисунке 6.2.

Рисунок 6.2 – Функциональная схема системы многоканальной связи с частотным

разделением каналов

В зарубежных источниках для обозначения принципа частотного разделения каналов (ЧРК) используется термин Frequency Division Multiply Access (FDMA ).

Сначала в соответствии с передаваемыми сообщениями первичные (индивидуальные) сигналы, имеющие энергетические спектры G 1 (w ), G 2 (w ), ..., G N (w ) модулируют поднесущие частоты w K каждого канала. Эту операцию выполняют модуляторы М 1 , М 2 , ..., М N канальных передатчиков. Полученные на выходе частотных фильтров Ф 1 , Ф 2 , ..., Ф N спектры g K (w ) канальных сигналов занимают соответственно полосы частот Dw 1 , Dw 2 , ..., Dw N , которые в общем случае могут отличаться по ширине от спектров сообщений W 1 , W 2 , ..., W N .

Проследим основные этапы образования сигналов, а также изменение этих сигналов в процессе передачи (рисунок 6.9).

Спектры сигналов g 1 (w ), g 2 (w ),..., g N (w ) суммируются (S) и их совокупность g (w ) поступает на групповой модулятор (М ). Здесь спектр g (w ) с помощью колебания несущей частоты w 0 переносится в область частот, отведенную для передачи данной группы каналов, т.е. групповой сигнал s (t ) преобразуется в линейный сигнал s Л (t ). При этом может использоваться любой вид модуляции.

На приемном конце линейный сигнал поступает на групповой демодулятор (приемник П ), который преобразует спектр линейного сигнала в спектр группового сигнала g ¢ (w). Спектр группового сигнала затем с помощью частотных фильтров Ф 1 , Ф 2 ,...,Ф N вновь разделяется на отдельные полосы Dw K , соответствующие отдельным каналам. Наконец, канальные демодуляторы Д преобразуют спектры сигналов g K (w) в спектры сообщений G¢ K (w) , предназначенные получателям.

Рисунок 6.3 – Преобразование спектров в системе с частотным разделением каналов

Смысл частотного способа разделения каналов состоит в следующем: реальная линия связи обладает ограниченной полосой пропускания, и при многоканальной передаче каждому отдельному каналу отводится определенная часть общей полосы пропускания.

На приемной стороне одновременно действуют сигналы всех каналов, различающиеся положением их частотных спектров на шкале частот. Чтобы без взаимных помех разделить такие сигналы, приемные устройства должны содержать частотные фильтры. Каждый из фильтров Ф K должен пропустить без ослабления лишь те частоты wÎDw K , которые принадлежат сигналу данного канала; частоты сигналов всех других каналов фильтр должен подавить.

Для снижения переходных помех до допустимого уровня вводятся защитные частотные интервалы Dw ЗАЩ (рисунок 6.4).

Рисунок 6.4 – Спектр группового сигнала с защитными интервалами

В современных системах многоканальной телефонной связи каждому телефонному каналу выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых звуковых сигналов ограничивается полосой от 300 до 3400 Гц, т.е. ширина спектра составляет 3,1 кГц. Между полосами частот соседних каналов предусмотрены интервалы шириной по 0,9 кГц, предназначенные для снижения уровня взаимных помех при расфильтровке сигналов. Это означает, что в многоканальных системах связи с частотным разделением сигналов эффективно используется лишь около 80% полосы пропускания линии связи.

- — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN time sharing …

разделение сигналов по форме - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN waveform separation … Справочник технического переводчика

разделение сигналов по частоте - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN frequency sharing … Справочник технического переводчика

разделение навигационных сигналов ГНСС кодовое - Источник: ГОСТ Р 52928 2010: Система спутниковая навигационная глобальная. Термины и определения оригинал …

разделение навигационных сигналов ГНСС частотное - Источник: ГОСТ Р 52928 2010: Система спутниковая навигационная глобальная. Термины и определения оригин … Словарь-справочник терминов нормативно-технической документации

разделение - 3.5 разделение (separation): Самое короткое расстояние между двумя токопроводящими частями через твердый изоляционный материал. Источник: ГОСТ Р МЭК 60079 15 2010: Взрывоопасные среды. Часть 15. Оборудование с видом взрывозащиты «n» … Словарь-справочник терминов нормативно-технической документации

Дискриминация сигналов АЭ - 2.14. Дискриминация сигналов АЭ D. Diskrimination der SE Signale E. Discrimination of AE signals Разделение сигналов АЭ по каким либо заданным признакам Источник: МИ 198 79: Акустическая эмиссия. Термины и определения … Словарь-справочник терминов нормативно-технической документации

временное разделение цифровых сигналов данных - временное разделение Процесс, обратный временному объединению цифровых сигналов данных. Примечание В соответствии с используемым способом временного объединения цифровых сигналов данных приобретает свое название и способ временного разделения… … Справочник технического переводчика

временное разделение цифровых сигналов электросвязи - временное разделение Процесс, обратный временному объединению цифровых сигналов электросвязи. Примечание В соответствии с используемым способом временного объединения цифровых сигналов электросвязи приобретает свое название и способ временного… … Справочник технического переводчика

Временное разделение цифровых сигналов данных - 40. Временное разделение цифровых сигналов данных Временное разделение Е. Time demultiplexing Процесс, обратный временному объединению цифровых сигналов данных. Примечание. В соответствии с используемым способом временного объединения цифровых… … Словарь-справочник терминов нормативно-технической документации

Временное разделение цифровых сигналов электросвязи - 105. Временное разделение цифровых сигналов электросвязи Временное разделение Digital demultiplexing Процесс, обратный временному объединению цифровых сигналов электросвязи. Примечание. В соответствии с используемым способом временного… … Словарь-справочник терминов нормативно-технической документации

Книги

  • Купить за 1017 грн (только Украина)
  • Теория информации. Учебное пособие для прикладного бакалавриата , Осокин А.Н.. В пособии рассмотрены этапы обращения информации в информационных системах, методы и модели измерения количества информации, датчики, описание сигналов (спектральное и вейвлет-представление…